Supplementary Information

Enhanced photoelectrochemical water-splitting performance of SrNbO₂N photoanodes by flux-assisted synthesis method and surface defect management

Yingchen Yang ^a, Zirui Lou ^a, Weisheng Lei ^a, Yichen Wang ^a, Rong Liang ^a, Chao Qin ^a, and Liping Zhu ^a, *

^aState Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou.

Number	SrCO ₃ /g	Nb ₂ O ₅ /g	Ratio(SrCl ₂ :KCl)	Temperature /℃	post-Ar
1(SNON800)	0.4097	0.455	1:1	800	Yes
2(SNON850)	0.4097	0.455	1:1	850	Yes
3(SNON900)	0.4097	0.455	1:1	900	Yes
4(SNON850-2)	0.4097	0.455	2:1	850	Yes
5(SNON850-2')	0.4097	0.455	2:1	850	No
6(SNON850-3)	0.4097	0.455	3:1	850	Yes

TableS1. Detailed parameter for the synthesis of SrNbO2N particles

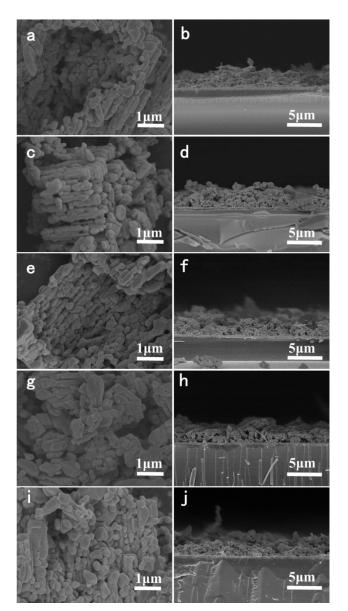


Fig. S1 (a)(c)(e)(g)(f) SEM images of SNON800, SNON850, SNON900, SNON850-2 and SNON850-3 particles, respectively
(b)(d)(f)(h)(j) SEM images of cross sections for SNON800, SNON850, SNON900, SNON850-2 and SNON850-3 photoanodes, respectively

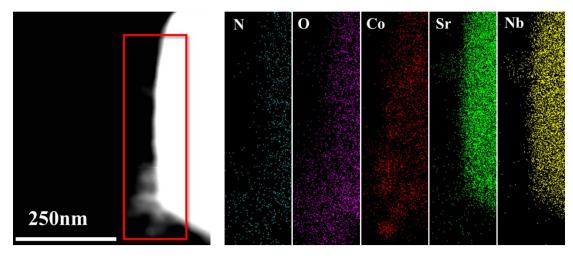


Fig. S2 TEM image and EDX elemental mapping images of N, O, Co, Sr and Nb for SrNbO₂N particles.

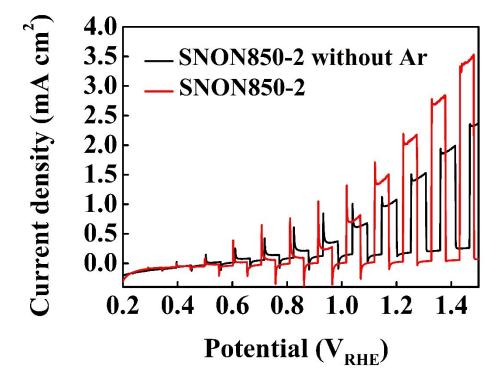


Fig. S3. Current-potential curves of SNON850-2 and SNON850-2 without Ar annealing

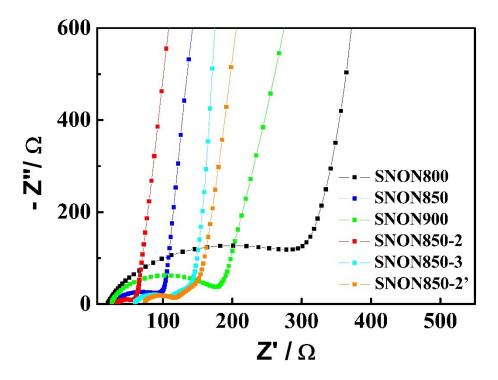


Fig. S4. The electrochemical impedance spectroscopy (EIS) of SrNbO₂N series.

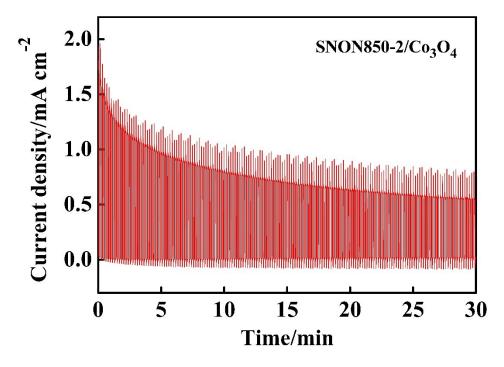


Fig. S5 Current-time curve for SNON850-2/Co $_3O_4$ photoanode performed at 1.23V versus RHE under simulated sunlight

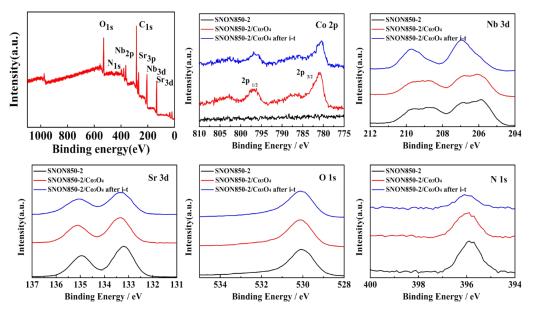


Fig. S6 XPS spectrum for SNON850-2, SNON-2/Co $_3O_4$ and SNON850-2/Co $_3O_4$ after photoelectrochemical measurement