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1. Calculating Ω(r)

Our method of counting is described in the paper. In this section, we give some counting result 
for different morphologies.

2. Morphology/Geometry

First, we describe the simplest morphology. Consider a symmetrical (the morphology of donor 
and acceptor is identical), device, with cubic lattice, with lattice parameter of 1[nm]. The 2D 
analog situation is shown in Figure 1S. Point ‘j’ is located at the origin. The colored area 
represents sites which are part of r-separated pair-configuration. Note that a colored site may 
participate in multiple r-separated pair-configuration.
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Figure 1S. 2D illustration of simple morphology. Red mesh describes sites on side A and green mesh – side B. Point ‘j’ is 
located at the origin. The colored area represents sites which taking place in forming r-separated CT. graphs (a)-(e) 

present the feeding area for r-separated CTs, where r is equal to 1-5[nm] respectively

Second, replace one side cubic lattice with elongated shaped sites, ‘face-on’ conformation, 
represented by 1X4X1 cuboid. we use Cartesian coordinate system (x, y, z), when the x-axis is 
perpendicular to donor-acceptor interface and y, z axes are parallel to it.  The 2D analog situation 
is shown in Figure 2S. 
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Figure 2S. 2D illustration of sites with elongated shape morphology, ‘face-on’ conformation (compare to Figure 1S).
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Third, similar to second case, but instead consider ‘edge-on’ conformation.  2D analog situation 
is shown in Figure 3S. 
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Figure 3S. 2D illustration of sites with elongated shape morphology, ‘edge-on’ conformation (compare to Figure 2S 
and Figure 1S).

Fourth, examine more elongated (1X10X1) ‘face-on’ system.

Fifth is a parallel ‘face-on’:’face-on’ system represented by 1X10X1:1X10X1 cuboids (Figure 
4S).
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Figure 4S. 2D illustration parallel ‘face-on’:’face-on’ system (compare to Figure 1S).

Sixth is a perpendicular ‘face-on’:’face-on’ system represented by 1X10X1:1X1X10 cuboids 
(Figure 5S).

Seventh is a ‘face-on’:’edge-on’ system represented by 1X10X1:10X1X1 cuboids

Eighth is a 1X1X1:3X3X3 system.

Ninth is a 1X6X10:3X3X3 system.
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Figure 5S. 3D illustration of a perpendicular ‘face-on’:’face-on’ system (compare to 
Figure 4S).



For each morphology, we calculated Ω as a function of r and extracted its figure of merit. Table 
1S organizes the counting results. 

Number dimensions Figure of 
merit

a R3

1 1X1X1:1X1X1 a∙r3 2.27±0.03 0.999

2 1X1X1:1X4X1 a∙r3 1.94±0.02 0.999

3 1X1X1:4X1X1 a∙r3 1.94±0.02 0.999

4 1X1X1:1X10X1 a∙r3 1.89±0.01 1.000

5 1X10X1: 
1X10X1 a∙r3 1.39±0.01 1.000

6 1X10X1: 
1X1X10 a∙r3 1.40±0.01 1.000

7 1X10X1: 
10X1X1 a∙r3 1.40±0.01 1.000

8 1X1X1:3X3X3 a∙r3 1.52±0.01 1.000

9 1X6X10:3X3X3 a∙r3 0.73±0.02 0.995

Table 1S. counting Ω(r) for diverse morphology

We conclude, that although the result is always proportional to r3, the pre-factor may change by a 
factor of up to three depending on the morphology.

3. Ordered interfacial layer
We simulated the case when the first interfacial layers of the donor and acceptor are ordered. All 

other molecules are energetic disordered with Gaussian distribution, the width of this distribution 

is according to the graph legend. We apply the EED model on a cubic geometry with lattice 

constant of 1 nm and assume =3.3. 

Compare these narrow local binding energy distributions to the results of the fully disordered 

system (Figure 4 a and b).



Figure 6S. a) and (b) are the normalized distributions of the local binding energy (Eb,j) at 200 °K and at 300 °K, 
respectively. Symbols are the simulation results and solid lines are Gaussian fits. Blue, cyan, green, grey, red, and 
magenta lines are simulation results for junction disorder standard deviation (cp) of 0 meV, 20 meV, 40 meV, 60 meV, 
80 meV, and 100 meV, respectively.

4. Dissociation efficiency and binding energy 
We have presented a model that accounts for the effect of entropy on CT exciton dissociation in 

the presence of disorder. Our work builds on the paper by Hood et. al. 1 but the translation of the 

disordered film to an effective medium is very different. The importance of choosing the most 

suitable method to “average” the disordered medium to obtain an effective (device equivalent) 

value has been discussed extensively in the context of charge mobility.2, 3 Starting our work we 

could consider three methods of treating entropy and disorder, one of which was used in the main 

paper.  The three methods (Figure 7) start with realizing that the sample should be considered as 

being composed of different environments (labeled j), each having its own set of disordered 

energy states and a resulting thermodynamic potential, Fj(r). The following task is to translate 

the ensemble of Fj into an effective quantity. The first rigorous treatment of entropy and 

disorder was by Hood et. al. 1 and in Figure 7 it is depicted as method A. The process of creating 

the effective, or device equivalent, medium consists of averaging the thermodynamic potentials 

and using the average potential (Feff) to extract the effective binding energy (see Figure 1 in the 

main text). The effective binding energy drops to below kT at junction disorder above cp = 

130meV or bulk disorder of a=d=90meV (Figure 8s). Linking this binding energy to device 

properties is not straight forward as a binding energy below kT would result in 100% dissociation 

efficiency regardless of any other material’s parameters (as exciton lifetime or charge hopping 

rate).
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Figure 7S. Illustration of three methods to arrive at an effective binding energy

In Figure 4 we showed that if one does not average Fj but rather extract from every j 

environment its local binding energy (Ebj) and separation distance, than the results have a rather 

large distribution. As all distributions, in Figure 4, are fitted well by a gaussian it may trigger 

what we labeled as method B in Figure 7S. Namely, define the effective binding energy as the 

average, or most probable, binding energy. Using this method, the effective binding energy drops 

slower, relative to A, as a function of disorder (Figure 8s). However, it also does not lend itself 

for direct comparison with experimental data. The third method (C in Figure 7) is the one 

proposed here. The basic idea behind it is to try and mimic the physical process taking place in 

the solar cell device. Namely, the dissociation efficiency of a device is a result of collecting the 

charges that were generated at different positions within the layer (i.e. at different environments). 

In Figure 8s we compare results obtained by the three methods as well as the effect of the 

counting strategy. As methods A and B do not provide the effective dissociation efficiency, we 

compare the binding energies. The top raw of Figure 8s was produced as in the main paper. For 

each environment to be evaluated, first a 3D lattice of sites energies is generated and then  for 

all ‘r’ are computed using the same lattice. As the same lattice is used for all ‘r’ there is some 

correlation between them. The second and third raw use the method as in ref 1 where for every ‘r’ 

one generates a new set of states with their number dictated by the rule (=2r3 or =r3).
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with 
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Ω(r)=r3 

Ω(r)=2r3 
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=10-4[cm2/V∙s], =10-8[s]

Method C

=10-2[cm2/V∙s], =10-8[s]

 

Figure 8S. Eb,eff versus disorder for all three methods. (a-c) Method A =10-2[cm2/V∙s], τCT=10-8[sec]; (e-g) Method A 
=10-4[cm2/V∙s], τCT=10-8[sec]; (i-k) Method B; (m-o) Method C. (a, e, i, m) calculating G(r) while scanning the 

geometry of [1 1 1, 1 1 1] (with correlation); (b, f, j, n) Ω(r)=2r3/3 no correlation; (c, g, k, o) Ω(r)= r3 no correlation

First, we discuss differences between results of method A and method B. As long as all CTs 

dissociate in the same separation distance, method A and B lead to identical results. Thus both 

methods predict the same Eb,eff for low disorder when almost all CT dissociates at the same 

separation distance. But as the disorder grows, the distribution of dissociation distance becomes 

wider, each ∆Fj(r) has maximum at a different r, and by averaging ∆Fj(r) the maximum value, 

Eb,eff, is lowered. Method A produces a fast decreasing Eb,eff  reaching zero within the disorder 

range considered. Method B also shows that Eb,eff is decreasing, but in a more softened way.

For Method C we use two columns as this method takes into account the materials’ physical 

properties as the exciton lifetime and the mobility (hooping rate).  For the two mobilities used we 

note that the effective binding energy does not reduce to zero. Moreover, at high disorder the 

temperature dependence flips sign instead of gradually diminishing to zero. The most unique 



feature of method C can not be presented in a figure like Figure 8s as it is the only method that 

directly evaluates the device equivalent effective dissociation efficiency. 

5. Further discussion regarding cd,eff and Eb,eff dependencies

Figure 9S shows the effective dissociation efficiency at (a) 200[⁰K] and at (b) 300[⁰K]. κcdτCT 

range is matched to mobility range of 10-5-10-2[cm2/V∙s], assuming τCT =10ns. As κcdτCT grows, so 

does the dissociation efficiency as the hopping away (κcd) becomes faster relative to the decay. In 

case of ordered or close to an ordered system, the dissociation efficiency is a linear function of 

κcdτCT. We may explain this linearity by paying attention to the fact that dissociation rate is 

respectively low because in the ordered case, unlike the disordered case, all Eb,j share almost the 

same value and it is unlikely to find low Eb,j. According to eq(11), when dissociation rate is low, 

ηcd,eff  is a linear function of κcdτCT:
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The dissociation is more effective as the disorder is increases because the expectation value of Eb,j 

drops as the disorder increases. Naturally, high temperature is another factor that encourages 

dissociation and leads to high ηcd,eff.



As we deduce Eb,eff from ηcd,eff, Eb,eff inherits ηcd,eff temperature, disorder, and κcdτCT dependencies. 

The fact Eb,eff is κcdτCT dependent shows the insignificance of Eb,eff as a key parameter in 

understanding the dissociation process.

The κcdτC dependence of Eb,eff is shown in Figure 10S Again, κcdτCT range is matched to mobility 

range of 10-5-10-2[cm2/V∙s]. For the ordered case, Eb,eff is independent of κcdτCT and equals to Eb,j 

which are identical for any j.

It seems that the same conditions which support ηcd,eff linear dependent on κcdτCT are responsible 

for Eb,eff independent of κcdτCT. We may verify this suspicion by using eq(12) and assuming 
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As κcdτCT and disorder are increasing, the assumptions are not holding and Eb,eff becomes more 

κcdτCT dependent.

Figure 10S. Effective binding energy as a function of κcdτCT for various disorder standard deviations (a) at 200[K] and 
at (b) 300[K].
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Figure 9S. effective dissociation efficiency (ηcd,eff) as function of κcdτCT for various junction disorder standard deviations (a) at 
200[K] and at (b) 300[K]. The vertical dashed lines correspond to =10-4cm2v-1s-1 (left line) and=10-2cm2v-1s-1 (right edge line) 
used for Figure 7 in the main text.



`Figure 9S reveals that as κcdτCT is growing, ηcd,eff tend to unity and all graphs of different disorders 

are getting closer together. This is the reason for the effect we see in Figure 10S causing all 

graphs getting closer together as κcdτCT increases. 

Below we show the same results but where the x-axis is the junction (charge-pair) disorder and 

the curves are for different charge mobility values (translated to Kcd using Onsager-Braun 

theory).

Figure 11S. effective dissociation efficiency as a function of disorder standard deviation for various values of κcdτCT 
(κcd values correlates to the mobility values written in the legend, τCT=10-8[s]) (a) at 200[K] and at (b) 300[K].at (b) 

300[⁰K].

Figure 12S. effective binding energy as a function of disorder standard deviation for various values of (κcd values 
correlates to the mobility values written in the legend, τCT=10-8[s]) (a) at 200[K] and at (b) 300[K].

6. EQE and IQE
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Figure 13s. Spectral distribution of the external quantum efficiency (EQE, purple), internal quantum efficiency (IQE, 
green), the absorbed fraction as 1 minus the measured cell’s reflection (dashed red), the white LED (dashed, black)

The internal quantum efficiency is calculated by dividing the external quantum efficiency (EQE) 
by the fraction of light absorbed by the cell (1-R).



7. Device simulation data

For parameters we used the effective bandgap of 1.5 eV (deduced from the inset to Figure 6c in 

main text), disorder parameter for the HOMO and LUMO levels of =70 meV, e=h=2∙10-4 cm2v-

1s-1, and a low bimolecular recombination of 10-12 cm3s-1 (Langevin coefficient is 2∙10-10 cm3s-1). 

For the contacts we assumed that the MoOx has the potential to align with the HOMO level. We 

used the workfunction of the Zinc Oxide and the trap recombination lifetime (CpPT) as fitting 

parameters to fit the VOC as well as the J-V shape at 1 Sun and 10-2 Sun. Best fits (Figure 8 in 

main text) were achieved using mid-gap traps with recombination lifetime of CpPT=8 ns and 

workfunction of ZnO being 0.22 eV below the LUMO level (of ITIC). Below we add two figures to 

expand the physical picture captured by the semiconductor device model.
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Figure 14s. Simulation of the same device as in the main paper but without trap-assisted recombination and the 
bimolecular recombination reduced by a factor of 100. The Result indicates that VOC is limited to below 1V and not by 
the magnitude of the recombination losses but rather the build in voltage..
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Figure 15s. Band structure of the same device simulated in Figure 14s under 1 Sun excitation. The dashed blue and red 
lines denote the electron and hole quasi Fermi energy, respectively. (a) at V=0. (b) at V=1V. Note that 1V is the flat 
band voltage indicating voltage losses at the contacts plus ZnO layer of 0.5V.
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