# Temperature and Doping-Tuned Coordination Environments around Electroactive Centers in Fe-doped $\alpha(\beta)$ -Ni(OH)<sub>2</sub> for Excellent Water Splitting

Qinghe Cao,<sup>a</sup> Mi Luo,<sup>b</sup> Yutian Huang,<sup>a</sup> Qi Liu,<sup>a</sup> Xiaoxing Kong,<sup>a</sup> Jinlong Lei,<sup>a</sup> Zheng Jiang<sup>\*b</sup> and Jiahai Wang<sup>\*a</sup>

<sup>a</sup> Department of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, Guangzhou University, Guangzhou 510006, P.R. China. E-mail: jiahaiwang@gzhu.edu.cn
<sup>b</sup> Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, PR. China. E-mail: jiangzheng@zjlab.org.cn

# **Experimental Section**

## **Materials:**

Ethanol, hydrochloric acid, potassium hydroxide, acetone, nickel(II) nitrate hexahydrate, iron(III) nitrate nonahydrate and urea were purchased from the Sinopharm Chemical Reagent Co., Ltd. Pt/C (20 wt% Pt) was purchased from the Shanghai Macklin Biochemical Co., Ltd. Nickel foam was obtained from the KunShan Kunag Xun Electronics Co., Ltd. RuO<sub>2</sub> was purchased from Aladdin Ltd. All of the reagents are of AR grade and were directly used in the experiments.

# Synthesis of Fe-doped Ni(OH)<sub>2</sub> on Ni Foam:

Before the reaction, Ni foam (20 mm × 35 mm × 1 mm in size) was pretreated with acetone and 3 M HCl with 15 minutes of sonication. To synthesize the Fe-doped Ni(OH)<sub>2</sub>, Ni(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O (0.194 g), Fe(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O (0.539 g) and urea (0.3 g) were dissolved in 35 mL of H<sub>2</sub>O. Then, the yellow solution along with the above-cleaned Ni foam was put into an autoclave (50 mL). The sealed autoclave was heated to 120 °C (180 °C, 240 °C) for 10 h. The synthesis of Ni(OH)<sub>2</sub> nanosheets had analogous procedures except for not adding Fe(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O. The synthesis of NiO had analogous procedures except that the heating temperature was increased to 280 °C.

# **Characterization:**

The instrument used for SEM was a field emission scanning electron microscope (SU8010). The XRD data was obtained from a Bruker D8 ADVANCE Diffractometer ( $\lambda$ =1.5418 Å). TEM and HRTEM were performed on a JEM-2100 with an accelerating voltage of 200 kV. The instrument used for XPS was a Thermo Scientific

Escalab 250Xi. Raman spectroscopy was conducted with an excitation wavelength of 514 nm. X-ray absorption spectra at the K-edges of Ni and Fe were measured in the transmission mode at beamline BL14W1 at the Shanghai Synchrotron Radiation Facility (SSRF, China). The synchrotron beam of BL14W1 was monochromatized using a double-crystal monochromator (DCM) operated at 3.5 GeV. The beam size at the sample was approximately 300 um×300 um (FWHM). All of the XAFS spectra were averaged from 2 scans and were analyzed using the Demeter software package (University of Chicago).

### **Electrochemical measurements:**

Fe-doped Ni(OH)<sub>2</sub> prepared in this experiment is directly used as the working electrode. A saturated calomel electrode and graphite rod were used as reference electrode and counter electrode, respectively. The current density was calculated based on the geometric area of the electrode. All potentials used in this study are versus the reversible hydrogen electrode (RHE): E(RHE) = E(SCE) + 0.0591pH + 0.2415 - 0.000761 (T - 298.15). Electrochemical impedance spectroscopy (EIS) was performed in a frequency range of 100 KHz to 1 Hz (amplitude 5 mV).

### **DFT calculations:**

First-principle calculations were performed by the density functional theory (DFT) using the Vienna Ab-initio Simulation Package (VASP) package. The generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE) functional was used to describe the electronic exchange and correlation effects. Uniform G-centered k-point meshes with a resolution of  $2\pi$ \*0.03 Å<sup>-1</sup> and Methfessel-Paxton

electronic smearing were adopted for the integration in the Brillouin zone for geometric optimization. The simulation was run with a cutoff energy of 500 eV throughout the computations. These settings ensure convergence of the total energies to within 1 meV per atom. Structural relaxation proceeded until all forces on atoms were less than 1 meV Å<sup>-1</sup> and the total stress tensor was within 0.01 GPa of the target value.

The bulk surface structures of  $\beta$ -Ni(OH)<sub>2</sub> (101), Fe-doped  $\beta$ -Ni(OH)<sub>2</sub> (101) and Fedoped  $\alpha$ -Ni(OH)<sub>2</sub> (012) were constructed with periodic boundary conditions and a gamma-point mesh of 3 × 2 × 1, which also included a 15 Å vacuum perpendicular to the surface. The free energy of the adsorption atomic hydrogen ( $\Delta G_{H^*}$ ) is obtained as follows:

$$\Delta G_{H^*} = \Delta E_{H^*} + \Delta E_{ZPE} - T\Delta S_{H^*}$$

 $\Delta E_{H^*}$  describes the energy needed to increase the coverage by one hydrogen atom.  $\Delta E_{ZPE}$  is the difference in the zero point energy, and  $\Delta S_{H^*}$  is the difference in entropy.  $\Delta E_{ZPE} - T\Delta S_{H^*}$  is approximately 0.24 eV, and thus,  $\Delta G_{H^*} = \Delta E_{H^*} + 0.24$ . For  $\Delta E_{H^*}$ , it is calculated as follows:

$$\Delta E_{H^*} = E(surface+H) - E(surface) - 1/2 E(H_2)$$

where E(surface+H) represents the total energy of the Ni(OH)<sub>2</sub> surface with one adsorbed hydrogen atom on the surface, E(surface) represents the total energy of the unmodified/modified Ni(OH)<sub>2</sub> surfaces, while  $E(H_2)$  represents the total energy of a gas phase H<sub>2</sub> molecule.



**Figure S1** Low-resolution TEM images of A) Fe-doped  $\alpha$ -Ni(OH)<sub>2</sub>-120 and B) Fe-doped  $\beta$ -Ni(OH)<sub>2</sub>-240.



**Figure S2** XRD patterns of Ni(OH)<sub>2</sub> prepared by the hydrothermal treatment of A) pure NF, B) NF with Ni(NO<sub>3</sub>)<sub>2</sub> added, C) NF with Fe(NO<sub>3</sub>)<sub>3</sub> added and D) NF with Ni(NO<sub>3</sub>)<sub>2</sub> and Fe(NO<sub>3</sub>)<sub>3</sub> added at 120, 180 and 240 °C, respectively ("in" represents no Ni(NO<sub>3</sub>)<sub>2</sub> or Fe(NO<sub>3</sub>)<sub>3</sub> added).

| Sources<br>Temperature (°C) | NF                    | NF+Ni(NO <sub>3</sub> ) <sub>2</sub> | NF+Fe(NO <sub>3</sub> ) <sub>3</sub>   | NF+Ni(NO <sub>3</sub> ) <sub>2</sub> +Fe(NO <sub>3</sub> ) <sub>3</sub> |
|-----------------------------|-----------------------|--------------------------------------|----------------------------------------|-------------------------------------------------------------------------|
| 120                         | β-Ni(OH) <sub>2</sub> | β-Ni(OH) <sub>2</sub>                | Fe-doped $\alpha$ -Ni(OH) <sub>2</sub> | Fe-doped $\alpha$ -Ni(OH) <sub>2</sub>                                  |
| 180                         | β-Ni(OH) <sub>2</sub> | β-Ni(OH) <sub>2</sub>                | Fe-doped $\alpha$ -Ni(OH) <sub>2</sub> | Fe-doped $\alpha$ -Ni(OH) <sub>2</sub>                                  |
| 240                         | β-Ni(OH) <sub>2</sub> | β-Ni(OH) <sub>2</sub>                | Fe-doped β-Ni(OH) <sub>2</sub>         | Fe-doped β-Ni(OH) <sub>2</sub>                                          |

Table 1 The influence of temperature and Fe-doping on the phase change of Ni(OH)<sub>2</sub>.



Figure S3 TEM-EDS spectra of Fe-doped  $\alpha$ -Ni(OH)<sub>2</sub>-120.



Figure S4 TEM-EDS spectra of Fe-doped  $\beta$ -Ni(OH)<sub>2</sub>-240.



Figure S5 XPS full spectra of Fe-doped  $\alpha$ -Ni(OH)<sub>2</sub>-120 and Fe-doped  $\beta$ -Ni(OH)<sub>2</sub>-240.



Figure S6 Raman spectra of  $\beta$ -Ni(OH)<sub>2</sub>, Fe-doped  $\alpha$ -Ni(OH)<sub>2</sub>-120 and Fe-doped  $\beta$ -Ni(OH)<sub>2</sub>-240.



| Catalysts                           | j (mA cm <sup>-2</sup> ) | Overpotential<br>(mV) | Ref.      |
|-------------------------------------|--------------------------|-----------------------|-----------|
| CoNi(OH) <sub>x</sub>               | 10                       | 280                   | 1         |
| NiFeOF                              | 10                       | 295                   | 2         |
| Fe-CoP                              | 10                       | 230                   | 3         |
| α-ΝίΟΟΗ                             | 10                       | 266                   | 4         |
| Fe-doped NiPS <sub>3</sub>          | 30                       | 256                   | 5         |
| NiFe LDH@NiCoP                      | 10                       | 220                   | 6         |
| Ni <sub>3</sub> FeN                 | 10                       | 280                   | 7         |
| Ni <sub>3</sub> S <sub>2</sub>      | 10                       | 223                   | 8         |
| Fe-Ni <sub>3</sub> C                | 10                       | 275                   | 9         |
| Fe-doped α-Ni(OH) <sub>2</sub> -120 | 10/30                    | 208/223               | This work |

non-precious metal OER catalysts in 1.0 M KOH.



**Figure S7** CV curves of samples prepared at different temperatures. The best OER performance is obtained at 120 °C.



Figure S8 CV curves of Fe-doped  $\alpha$ -Ni(OH)<sub>2</sub>-120, Fe-doped  $\beta$ -Ni(OH)<sub>2</sub>-240,  $\beta$ -Ni(OH)<sub>2</sub>-120 and  $\beta$ -Ni(OH)<sub>2</sub>-240.

**Table S3** The comparison of overpotential (V vs.RHE) required to reach a current density of A) 200 mA cm<sup>-2</sup> and B) 300 mA cm<sup>-2</sup> for Ni(OH)<sub>2</sub> prepared in different conditions.

| Catalysts<br>Temperature (℃) | Ni(OH) <sub>2</sub> | Fe-doped Ni(OH) <sub>2</sub> |
|------------------------------|---------------------|------------------------------|
| 120                          | 0.539               | 0.260                        |
| 180                          | 0.551               | 0.280                        |
| 240                          | 0.591               | 0.357                        |

**B**:

| Catalysts<br>Temperature (°C) | Ni(OH) <sub>2</sub> | Fe-doped Ni(OH) <sub>2</sub> |  |
|-------------------------------|---------------------|------------------------------|--|
| 120                           | 0.561               | 0.270                        |  |
| 180                           | 0.582               | 0.294                        |  |
| 240                           | 0.617               | 0.383                        |  |



**Figure S9** CV curves of A) Fe-doped  $\alpha$ -Ni(OH)<sub>2</sub>-120 and B) Fe-doped  $\beta$ -Ni(OH)<sub>2</sub>-240 at different scan rates in 1 M KOH in the non-faradaic potential region. C) C<sub>dl</sub> of Fe-doped  $\alpha$ -Ni(OH)<sub>2</sub>-120 and Fe-doped  $\beta$ -Ni(OH)<sub>2</sub>-240.



Figure S10 The reduction peak areas of Ni<sup>2+</sup> to Ni<sup>3+</sup>/Ni<sup>4+</sup> for A) Fe-doped  $\alpha$ -Ni(OH)<sub>2</sub>-120 and B) Fe-doped  $\beta$ -Ni(OH)<sub>2</sub>-240.



**Figure S11** LSV curves of different samples prepared at different temperatures. The best HER performance is obtained at 240 °C.

| <b>Table S4</b> Comparisons of HER performances of Fe-doped $\beta$ -Ni(OH) <sub>2</sub> -240 with other |
|----------------------------------------------------------------------------------------------------------|
| non-precious metal HER catalysts in 1.0 M KOH.                                                           |

| Catalysts                                                 | j (mA cm <sup>-2</sup> ) | Overpotential (mV) | Ref.      |
|-----------------------------------------------------------|--------------------------|--------------------|-----------|
| NiFeOF                                                    | 10                       | 253                | 2         |
| Fe-CoP                                                    | 10                       | 78                 | 3         |
| NiFe LDH@NiCoP                                            | 10                       | 120                | 6         |
| Ni <sub>3</sub> FeN                                       | 10                       | 158                | 7         |
| Fe-Ni <sub>3</sub> C                                      | 10                       | 178                | 9         |
| NiCo <sub>2</sub> P <sub>x</sub>                          | 10                       | 58                 | 10        |
| O-Co <sub>2</sub> P                                       | 10                       | 160                | 11        |
| Ni <sub>2</sub> P                                         | 10                       | 176                | 12        |
| NiFe-MOF                                                  | 10                       | 134                | 13        |
| Mo-Ni <sub>2</sub> P                                      | 10                       | 78                 | 14        |
| NiO with oxygen vacancies                                 | 10                       | 110                | 15        |
| Mesoporous FeS <sub>2</sub>                               | 10                       | 96                 | 16        |
| CoO <sub>x</sub> @CN                                      | 10                       | 85                 | 17        |
| MoS <sub>2</sub> /Ni <sub>3</sub> S <sub>2</sub>          | 10                       | 110                | 18        |
| VOOH                                                      | 10                       | 164                | 19        |
| MoS <sub>2</sub> /Ti <sub>3</sub> C <sub>2</sub> -MXene@C | 10                       | 135                | 20        |
| Cu@CoS <sub>x</sub>                                       | 10                       | 134                | 21        |
| EG/H-Co <sub>0.85</sub> Se P                              | 10                       | 150                | 22        |
| Co <sub>0.9</sub> S <sub>0.58</sub> P <sub>0.42</sub>     | 10                       | 141                | 23        |
| Ni/NiFe                                                   | 10                       | 210                | 24        |
| Fe-doped β-Ni(OH) <sub>2</sub> -240                       | 10                       | 53.8               | This work |



Figure S12 XRD pattern of the sample prepared at 280 °C.



**Figure S13** A) HER performance of  $\beta$ -Ni(OH)<sub>2</sub>-120 and  $\beta$ -Ni(OH)<sub>2</sub>-240 conducted in 1 M KOH. B) Nyquist plots of  $\beta$ -Ni(OH)<sub>2</sub>-120 and  $\beta$ -Ni(OH)<sub>2</sub>-240 obtained at -0.15 V vs. RHE. C) CV curves in the non-faradaic capacitance current range and D) plots of the current density versus voltage scan rate for  $\beta$ -Ni(OH)<sub>2</sub>-120. E) CV curves in the non-faradaic capacitance current density versus voltage and F) plots of the current density versus voltage scan rate for  $\beta$ -Ni(OH)<sub>2</sub>-240.



**Figure S14** A) Chronopotentiometry curves (j=20 mA cm<sup>-2</sup>) and B) current stability testing for Fe-doped  $\alpha$ -Ni(OH)<sub>2</sub>-120 toward the OER performance. C) Chronopotentiometry curves (j=20 mA cm<sup>-2</sup>) and D) current stability testing for Fe-doped  $\beta$ -Ni(OH)<sub>2</sub>-240 toward the HER performance.



Figure S15 SEM images of Fe-doped  $\beta$ -Ni(OH)<sub>2</sub>-240 A) before and B) after the potential sweeps test.



Figure S16 Raman spectra of Fe-doped  $\beta$ -Ni(OH)<sub>2</sub>-240 before and after potential sweeps for 3000 cycles.



Figure S17 Quantitative  $H_2$  measurement via water displacement.

| Catalysts                              | Bond type | N         | R (Å)        | $\Delta E_0(ev)$ | $\sigma^2 \times 10^3$ (Å <sup>2</sup> ) |
|----------------------------------------|-----------|-----------|--------------|------------------|------------------------------------------|
| Fe-doped α-Ni(OH) <sub>2</sub> -120-Ni | Ni-O      | 6.7       | 2.03(±-0.02) | 6.1(±0.9)        | 8.2(±1.2)                                |
|                                        | Ni-Ni/Fe  | 6.0       | 3.09(±-0.03) | 0.4(±1.2)        | 8.6(±0.5)                                |
| Fe-doped α-Ni(OH) <sub>2</sub> -120-Fe | Fe-O      | 6.0(±0.8) | 1.97(±-0.09) | 2.1(±1.9)        | 8.5(±2.1)                                |
|                                        | Fe-Fe/Ni  | 5.9(±1.4) | 3.12(±0.01)  | 9.0(±2.0)        | 9.2(±2.4)                                |
| Fe-doped β-Ni(OH) <sub>2</sub> -240-Ni | Ni-O      | 6.5       | 2.04(±-0.01) | 4.3(±2.0)        | 8.8(±1.1)                                |
|                                        | Ni-Ni/Fe  | 5.5       | 3.06(±0.02)  | 0.3(±2.9)        | 11.0(±0.1)                               |
| Fe-doped β-Ni(OH) <sub>2</sub> -240-Fe | Fe-O      | 5.5(±1.0) | 1.95(±0.01)  | 2.9(±2.5)        | 8.1(±2.8)                                |
|                                        | Fe-Fe/Ni  | 6.0       | 3.11(±0.02)  | 8.3(±2.3)        | 9.3(±1.1)                                |

Table S5 Structural parameters of the sample obtained from the XAFS fitting.

N, coordination number; R, distance between absorber and backscatter atoms;  $\Delta E_0$ , inner potential correction to account for the difference in the inner potential between the sample and the reference compound.  $\sigma^2$ , Debye–Waller factor.



**Figure S18** K-space data of the A) Ni K-edge and B) Fe K-edge for Fe-doped  $\alpha$ -Ni(OH)<sub>2</sub>-120 and Fe-doped  $\beta$ -Ni(OH)<sub>2</sub>-240.

|                                    | Step1:                    |                                            |                                | Step4:                       |
|------------------------------------|---------------------------|--------------------------------------------|--------------------------------|------------------------------|
| Catalysts                          | surface+2H <sub>2</sub> O | surface+H <sub>2</sub> O*+H <sub>2</sub> O | surface+H*+OH+H <sub>2</sub> O | surface+H <sub>2</sub> *+2OH |
| β-Ni(OH) <sub>2</sub>              |                           |                                            |                                |                              |
|                                    | E=-416.09332 eV           | E= -415.03170 eV                           | E= -415.922196 eV              | E= -415.48127 eV             |
| Fe-doped α-<br>Ni(OH) <sub>2</sub> |                           |                                            |                                |                              |
|                                    | E=-417.47017 eV           | E= -415.60024 eV                           | E= -417.59544 eV               | E=-417.06779 eV              |
| Fe-doped β-<br>Ni(OH) <sub>2</sub> |                           |                                            |                                |                              |
|                                    | E= -418.58416 eV          | E= -417.66754 eV                           | E=-418.80949 eV                | E=-418.21136 eV              |

 $\begin{array}{l} \textbf{Table S6} \text{ . The calculated free energies of } H_2O \text{ adsorption, } H \text{ adsorption and } H_2 \\ \text{ adsorption for } \beta\text{-Ni}(OH)_2\text{, } Fe\text{-doped } \alpha\text{-Ni}(OH)_2\text{ and } Fe\text{-doped } \beta\text{-Ni}(OH)_2\text{.} \end{array}$ 

**Table S7** Calculation of hydrogen adsorption energies at different sites for  $\beta$ -Ni(OH)2,Fe-doped  $\alpha$ -Ni(OH)2 and Fe-doped  $\beta$ -Ni(OH)2.

| Catalysts                      | Active site | E(surface+H) | E(surface)   | E(H <sub>2</sub> ) | ΔΕ       | ΔG       |
|--------------------------------|-------------|--------------|--------------|--------------------|----------|----------|
| β-Ni(OH) <sub>2</sub>          | Ni          | -390.6912732 | -387.4481224 | -6.76489           | 0.139294 | 0.37929  |
| Fe-doped α-Ni(OH) <sub>2</sub> | Ni          | -393.1936532 | -389.9389626 | -6.76489           | 0.127754 | 0.36775  |
|                                | Fe          | -393.5785695 | -389.9389626 | -6.76489           | -0.25716 | -0.01716 |
| Fe-doped β-Ni(OH) <sub>2</sub> | Ni          | -392.0243956 | -388.8249673 | -6.76489           | 0.18302  | 0.42302  |
|                                | Fe          | -392.3645156 | -388.8249673 | -6.76489           | -0.15710 | 0.08290  |



**Figure S19** The calculated density of states of A)  $\beta$ -Ni(OH)<sub>2</sub>, B) Fe-doped  $\alpha$ -Ni(OH)<sub>2</sub> and C) Fe-doped  $\beta$ -Ni(OH)<sub>2</sub>.

**Table S8** Comparisons of overall water-splitting performance of Fe-doped  $\alpha$ -Ni(OH)<sub>2</sub>-120||Fe-doped  $\beta$ -Ni(OH)<sub>2</sub>-240 with other non-nobel-metal bifunctional catalysts in 1.0 M KOH.

| Catalysts                                                                                                | j (mA cm <sup>-2</sup> ) | Overpotential (mV) | Ref.      |
|----------------------------------------------------------------------------------------------------------|--------------------------|--------------------|-----------|
| CoNi(OH) <sub>x</sub>   NiN <sub>x</sub>                                                                 | 11                       | 420                | 1         |
| NiFeOF   NiFeOF                                                                                          | 10                       | 600                | 2         |
| Fe-CoP  Fe-CoP                                                                                           | 10                       | 370                | 3         |
| NiFe LDH@NiCoP  NiFe LDH@NiCoP                                                                           | 10                       | 340                | 6         |
| Ni <sub>3</sub> S <sub>2</sub>   Ni <sub>3</sub> S <sub>2</sub>                                          | 13                       | 530                | 8         |
| Ni <sub>2</sub> P  Ni <sub>2</sub> P                                                                     | 10                       | 350                | 12        |
| EG/H-Co <sub>0.85</sub> Se P   EG/H-Co <sub>0.85</sub> Se P                                              | 10                       | 410                | 22        |
| NiFe-MOF  NiFe-MOF                                                                                       | 10                       | 320                | 13        |
| $MoS_2/Ni_3S_2  MoS_2/Ni_3S_2 $                                                                          | 10                       | 330                | 18        |
| VOOH  VOOH                                                                                               | 10                       | 390                | 19        |
| Cu@CoS <sub>x</sub>   Cu@CoS <sub>x</sub>                                                                | 100                      | 570                | 21        |
| Ni/NiFe  Ni/NiFe                                                                                         | 10                       | 330                | 24        |
| NiCoP  NiCoP                                                                                             | 10                       | 350                | 25        |
| CoP  CoP                                                                                                 | 10                       | 350                | 26        |
| NiSe  NiSe                                                                                               | 10                       | 400                | 27        |
| Ni <sub>5</sub> P <sub>4</sub>   Ni <sub>5</sub> P <sub>4</sub>                                          | 10                       | 470                | 28        |
| NiCo <sub>2</sub> O <sub>4</sub> /Ni <sub>2</sub> P  NiCo <sub>2</sub> O <sub>4</sub> /Ni <sub>2</sub> P | 10                       | 360                | 29        |
| Am FePO <sub>4</sub>   Am FePO <sub>4</sub>                                                              | 10                       | 310                | 30        |
| Ni@NC  Ni@NC                                                                                             | 10                       | 370                | 31        |
| NiCoP/rGO  NiCoP/rGO                                                                                     | 10                       | 360                | 32        |
| Ni <sub>0.9</sub> Fe <sub>0.1</sub> /NC  Ni <sub>0.9</sub> Fe <sub>0.1</sub> /NC                         | 10                       | 350                | 33        |
| FeB <sub>2</sub>   FeB <sub>2</sub>                                                                      | 10                       | 340                | 34        |
| Ni <sub>3</sub> FeN/r-GO   Ni <sub>3</sub> FeN/r-GO                                                      | 10                       | 370                | 35        |
| Fe-doped α-Ni(OH) <sub>2</sub> -120  Fe-doped β-Ni(OH) <sub>2</sub> -240                                 | 10/100                   | 290/460            | This work |

### References

- [1] S. Li, Y. Wang, S. Peng, L. Zhang, A. M. Al-Enizi, H. Zhang, X. Sun, G. Zheng, Adv. Energy Mater. 2016, 6, 1501661.
- [2] K. Liang, L. Guo, K. Marcus, S. Zhang, Z. Yang, D. E. Perea, L. Zhou, Y. Du, Y. Yang, ACS Catal. 2017, 7, 8406-8412.
- [3] C. Tang, R. Zhang, W. Lu, L. He, X. Jiang, A. M. Asiri, X. Sun, Adv. Mater. 2017, 29, 1602441.
- [4] Q. Zhang, C. Zhang, J. Liang, P. Yin, Y. Tian, ACS Sustainable Chem. Eng. 2017, 5, 3808-3818.
- [5] Q. Liang, L. Zhong, C. Du, Y. Luo, Y. Zheng, S. Li, Q. Yan, *Nano Energy* 2018, 47, 257-265.
- [6] H. Zhang, X. Li, A. Hähnel, V. Naumann, C. Lin, S. Azimi, S. L. Schweizer, A. W. Maijenburg, R. B. Wehrspohn, *Adv. Funct. Mater.* 2018, 28, 1706847.
- [7] X. Jia, Y. Zhao, G. Chen, L. Shang, R. Shi, X. Kang, G. I. N. Waterhouse, L.-Z. Wu, C.-H. Tung, T. Zhang, *Adv. Energy Mater.* 2016, *6*, 1502585.
- [8] L. L. Feng, G. Yu, Y. Wu, G. D. Li, H. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, J. Am. Chem. Soc. 2015, 137, 14023-14026.
- [9] H. Fan, H. Yu, Y. Zhang, Y. Zheng, Y. Luo, Z. Dai, B. Li, Y. Zong, Q. Yan, Angew. Chem., Int. Ed. 2017, 56, 12566-12570.
- [10] R. Zhang, X. Wang, S. Yu, T. Wen, X. Zhu, F. Yang, X. Sun, X. Wang, W. Hu, Adv. Mater. 2017, 29, 1605502.
- [11] K. Xu, H. Ding, M. Zhang, M. Chen, Z. Hao, L. Zhang, C. Wu, Y. Xie, Adv. Mater. 2017, 29, 1606980.
- [12] P. W. Menezes, A. Indra, C. Das, C. Walter, C. Göbel, V. Gutkin, D. Schmeiβer, M. Driess, ACS Catal. 2016, 7, 103-109.
- [13] J. Duan, S. Chen, C. Zhao, *Nat. commun.* **2017**, *8*, 15341.
- [14] Y. Sun, L. Hang, Q. Shen, T. Zhang, H. Li, X. Zhang, X. Lyu, Y. Li, *Nanoscale* 2017, 9, 16674-16679.
- [15] T. Zhang, M.-Y. Wu, D.-Y. Yan, J. Mao, H. Liu, W.-B. Hu, X.-W. Du, T. Ling, S.-Z. Qiao, *Nano Energy* 2018, 43, 103-109.
- [16] R. Miao, B. Dutta, S. Sahoo, J. He, W. Zhong, S. A. Cetegen, T. Jiang, S. P. Alpay, S. L. Suib, J. Am. Chem. Soc. 2017, 139, 13604-13607.
- [17] H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang, Y. Wang, J. Am. Chem. Soc. 2015, 137, 2688-2694.
- [18] J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang, X. Feng, Angew. Chem., Int. Ed. 2016, 55, 6702-6707.
- [19] H. Shi, H. Liang, F. Ming, Z. Wang, Angew. Chem., Int. Ed. 2017, 56, 573-577.
- [20] X. Wu, Z. Wang, M. Yu, L. Xiu, J. Qiu, Adv. Mater. 2017, 29, 1607017.
- [21] Y. Liu, Q. Li, R. Si, G.-D. Li, W. Li, D.-P. Liu, D. Wang, L. Sun, Y. Zhang, X. Zou, Adv. Mater. 2017, 29, 1606200.
- [22] Y. Hou, M. Qiu, T. Zhang, X. Zhuang, C.-S. Kim, C. Yuan, X. Feng, Adv. Mater. 2017, 29, 1701589.
- [23] Z. Dai, H. Geng, J. Wang, Y. Luo, B. Li, Y. Zong, J. Yang, Y. Guo, Y. Zheng, X. Wang, Q. Yan, ACS Nano 2017, 11, 11031-11040.
- [24] Z. Wu, Z. Wang, F. Geng, ACS Appl. Mater. Interfaces 2018, 10, 8585-8593.
- [25] H. Liang, A. N. Gandi, D. H. Anjum, X. Wang, U. Schwingenschlogl, H. N. Alshareef, Nano

Lett. 2016, 16, 7718-7725.

- [26] W. Li, X. Gao, D. Xiong, F. Xia, J. Liu, W. G. Song, J. Xu, S. M. Thalluri, M. F. Cerqueira, X. Fu, L. Liu, *Chem. sci.* 2017, *8*, 2952-2958.
- [27] C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, Angew. Chem., Int. Ed. 2015, 54, 9351-9355.
- [28] M. Ledendecker, S. Krick Calderon, C. Papp, H. P. Steinruck, M. Antonietti, M. Shalom, Angew. Chem., Int. Ed. 2015, 54, 12361-12365.
- [29] L. Wang, C. Gu, X. Ge, J. Zhang, H. Zhu, J. Tu, Adv. Mater. Interfaces 2017, 4, 1700481.
- [30] L. Yang, Z. Guo, J. Huang, Y. Xi, R. Gao, G. Su, W. Wang, L. Cao, B. Dong, Adv. Mater. 2017, 29, 1704574.
- [31] Y. Xu, W. Tu, B. Zhang, S. Yin, Y. Huang, M. Kraft, R. Xu, Adv Mater 2017, 29, 1605957.
- [32] J. Li, M. Yan, X. Zhou, Z.-Q. Huang, Z. Xia, C.-R. Chang, Y. Ma, Y. Qu, Adv. Funct. Mater. 2016, 26, 6785-6796.
- [33] X. Zhang, H. Xu, X. Li, Y. Li, T. Yang, Y. Liang, ACS Catal. 2015, 6, 580-588.
- [34] H. Li, P. Wen, Q. Li, C. Dun, J. Xing, C. Lu, S. Adhikari, L. Jiang, D. L. Carroll, S. M. Geyer, Adv. Energy Mater. 2017, 7, 1700513.
- [35] Y. Gu, S. Chen, J. Ren, Y. A. Jia, C. Chen, S. Komarneni, D. Yang, X. Yao, ACS Nano 2018, 12, 245-253.