In Situ-Generated Co embedded in N-doped carbon hybrids for the upgrading of levulinic acid in aqueous phase

Wenxiu Li^a, Weijie Geng^a, Lin Liu^a, qianqian Shang^a, liying Liu^b, Xiangjin Kong^{*a} ^a School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory / Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.

^b School of Mathematics Science, Liaocheng University, Liaocheng 252000, China.

_	Table ST Pore structure of the Co@iNC catalysis										
Samples Micropore		Micropore	External surface	Total surface	Pore	Average pore					
		area(m ² /g)	area(m ² /g)	area(m ² /g)	volume(cm ³ /g)	diameter (nm)					
	Co@NC-600		11.4	7.47	0.01	-					
	Co@NC-700	133.4	173.6	307.0	0.285	3.82					
	Co@NC-800	130.6	182.6	313.2	0.293	3.79					
	Co@NC-900	108.9	222.6	331.5	0.397	3.82					
	^{10th} Cycle	134.9	178.0	312.9	0.361	3.78					

 Table S1 Pore structure of the Co@NC catalysts

Fig. S1 TEM images of Co@NC-600

Fig. S2 XPS survey spectrum of (a) Co@NC-600 (b) Co@NC-700, (c) Co@NC-800, (d) Co@NC-900

Sample		XPS			^a Element Analyzer		ł	^b ICP	c d _{Co} ⁰	Id/Ig
in t	Ν	С	0	Co	Ν	С		Co	(nm)	2 0
Co@NC-600	15.7	69.0	8.2	7.1	16.2	62.6				0.94
Co@NC-700	8.6	79.7	6.8	4.9	6.5	75.5		4.9	19.1	0.95
Co@NC-800	5.1	86.3	5.2	3.5	2.4	81.2		6.5	17.9	1.02
Co@NC-900	2.8	88.7	4.8	3.7	1.23	82.4		11.2	34.5	1.05

Table S2 Chemical compositions and structural parameters of Co@NC (wt.%)

^a The ultimate analysis was analyzed by Vario EL elemental analyzer (Elementar, Germany).

^b The Co loading content in catalyst quantitative was measured by inductively coupled plasma-atomic emission spectroscopy (ICP-AES, PerkinElmer instruments, Norwalk, 2100 DV, USA).

^cCalculated from the Scherrer formula according to the (111) diffraction lines.

Fig. S3 The C1s spectras of (a) Co@NC-600 (b) Co@NC-700, (c) Co@NC-800, (d) Co@NC-900

Table S3 The different kinds of C species in the Co@NC catalysts										
Sampla	sp2	C-C	C-O	C=O	Satellite					
Sample	(284.4 eV)	(285.3 eV)	(287.4 eV)	(289.2 eV)	(291.0 eV)					
Co@NC-600	46.4	36.1	11.0	4.5	2.1					
Co@NC-700	71.5	6.9	11.2	8.9	1.6					
Co@NC-800	82.7	6.9	2.6	5.6	2.2					
Co@NC-900	88.1	1.7	1.71	1.0	7.5					
Spent	51.1	35.4	6.3	5.2	2.0					

Table	Table S4 The content of Co species in Co@NC catalysts									
Sampla	Metallic Co	Co (II)-N/O	Co (III)-N/O							
Sample	(778.3 ev)	(780.4 ev)	(782.9 ev)							
Co@NC-600	9.3	60.1	30.6							
Co@NC-700	14.4	56.3	29.3							
Co@NC-800	17.0	56.0	27.0							
Co@NC-900	18.4	51.5	30.2							

Fig. S4 H₂-TPD of (a) Co@NC-600 (b) Co@NC-700, (c) Co@NC-800, (d) Co@NC-900

Sample	Temp. (°С)	H_2 adsorp. (mmol H_2/g)	Temp. (°C)	H_2 adsorp. (mmol H_2/g)	Total H ₂ adsorp. (mmol H ₂ /g)
Co@NC-600	148	0.058	402	0.026	0.084
Co@NC-700	141	0.067	528	0.017	0.084
Co@NC-800	87	0.039	515	0.016	0.055
Co@NC-900			525	0.042	0.042

Table S5	The Hy	vdrogen	adsor	otion	of (Col	aNC	cataly	/sts
					· ·	-			

Table S6 The content of nitrogen species in Co@NC catalysts

Sample	Pyridinic-N (398.3 eV)	Co-Nx (399.1 eV)	Pyrrolic-N (400.1 eV)	Graphitic-N (401.0 eV)	Oxidized-N (403.3 eV)
Co@NC-600	60.1	0	20.1	12.3	7.5
Co@NC-700	48.1	1.5	23.3	14.5	12.6
Co@NC-800	28.9	13.9	10.2	28.3	18.8
Co@NC-900	13.8	23.0	2.2	35.7	25.3

	Weak aci	d capacity	Medium acid		
Sample	Peak Temp. (°C)	Capacity	Peak Temp. (°C)	Capacity	Total
Co@NC-600	174	0.142	-	-	0.142
Co@NC-700	178	0.086	520	0.06	0.146
Co@NC-800	-	-	515	0.035	0.035
Co@NC-900	-	-	531	0.034	0.034

Table S7 The acidity capacity of Co@NC catalysts (mmol NH₃/g)

Fig. S5 H₂-TPR of (a) Co@NC-600 (b) Co@NC-700, (c) Co@NC-800, (d) Co@NC-900

Fig. S6 XPS survey of (a) Co@NC-800 (b) Co@NC-800 after adsorbing SCN-

Fig. S7 The N 1s spectra of (a) Co@NC-800, (b) Co@NC-800 after adsorbing SCN-

Fig. S8 The Co 2p spectra of (a) Co@NC-800, (b) Co@NC-800 after adsorbing SCN-

Fig. S9 Poisoning test of the Co@NC-800 catalyst with KSCN Reaction condition: 10 ml H₂O, 1g of LA, 0.1g catalyst, 2MPa, 220°C, 5h. Co@NC-800 with 3 equiv. of KSCN.

Table S8 The content of Co species in Co@NC catalysts									
Sample	Metallic Co	Co(II)-N/O	Co(III)-N/O	ICP Co wt%					
Sample	(778.3 ev)	(780.4 ev)	(782.9 ev)						
Co@NC-800	17.0	56.0	27.0	6.5					
Co@C-800	7.5	61.8	23.7	9.3					
Co@N-800	1.1	77.8	21.1	71					
Co/NC-800	18.6	66.2	15.2	7					

00

Fig. S11 NH₃-TPD of (a) Co@NC-800 (b) Co@C-800, (c) Co@N-800

	Acidity (weak)		Acidity (medium)		Acidity		Total	
sample	Temp. (°C)	Acidity	Temp. (°C)	Acidity	Temp. (°C)	Acidity	acidity	
Co@NC-800	89	0.008	515	0.035			0.043	
Co@C-800	155	0.037	549	0.117			0.154	
Co@N-800	135	0.028	444	0.215	598	0.122	0.365	

Fig. S12 The N 1s spectra of (a) Co@NC-800 (b) Co@N-800, (c) Co/NC-800

1 at	Table 510 The content of introgen species in Co@NC catalysts								
Sampla	pyridinic-N	Co-Nx	Pyrrolic-N	Graphitic-N	Oxidized-N				
Sample	(398.3 eV)	(399.1 eV)	(400.1 eV)	(401.0 eV)	(403.3 eV)				
Co@NC-800	28.9	13.9	10.2	28.3	18.8				
Co@N-800	35.7	12.4	1.2	32.45	18.2				
Co/NC-800	47.5	0	19.5	21.3	11.7				
	5	15 25	35	45 55					

-0.3

-0.5

-0.9

-1.1

-1.3

-1.5

-4.4 -4.6 -4.8

-5.0 -5.2 n (k) -5.4

-5.6

-5.8 -6.0

-6.2 0.00200

Ea=73.708KJ/mol

 $\ln(C_t/C_0)$ -0.7 T = 180 °C, k = 0.0024 min⁻¹

= 200 °C, k = 0.0061 min⁻¹

= 220 °C, $k = 0.0117 min^{-1}$

Table S10 The content of nitrogen species in Co@NC estalusts

Fig. S13 Plot of $ln(C_t/C_0)$ versus time for the hydrogenation of LA over the Co@NC-800 catalyst at different temperatures. The inset shows the corresponding Arrhenius plot. Reaction conditions: LA (1g), Co@NC-800 catalyst (0.1g), H₂O (10 mL), H₂ pressure (2 MPa).

0.00205 0.00210 0.00215 0.00220 1/T

Fig. S14 Magnetic hysteresis loops of Co@NCNT-800

Fig. S15 The reusability results of Co@NC-800 at low conversion. Reaction conditions: LA (1g), catalyst (0.1g), H_2O (10mL), 220 °C, 0.5 MPa H_2 and 5 h.

Fig. S16 N_2 sorption isotherms of the fresh and $10^{th}\,recycled$ catalysts

Fig. S17 XRD patterns of the fresh Co@NC-800 and spent Co@NC-800