Supporting Information

Cu₂CoGeS₄ nanocrystals for high performance aqueous polysulfide/iodide redox flow batteries: enhanced selectively to the electrocatalytic conversion of polysulfides

Ye Zhu ^{a,b}, Kai He ^b, Tsegaye Tadesse Tsega ^b, Nazakat Ali ^b, Jiantao Zai ^{b,*}, Shoushuang Huang ^{a,*}, Xuefeng Qian ^b and Zhiwen Chen ^{a,*}

^a School of Environmental and Chemical Engineering, Shanghai University, Shanghai

200444, P. R. China

^b Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering and State Key, Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

* Correspondence to: zaijiantao@sjtu.edu.cn; sshuang@shu.edu.cn;

zwchen@shu.edu.cn

Figure S1. The Raman spectra of the as-synthesized Cu₂CoGeS₄ nanocrystals.

Figure S2. EDS spectrum of the as-prepared Cu₂XGeS₄ (X=Fe, Co, Ni, Cd, Mn) nanocrystals.

Figure S3. (a) The CVs of the negative electrolyte sweeping at different scan rates from 10 mV s^{-1} to 100 mV s^{-1} ; (b) The linear relationship between the peak current density with the square root of the scan rates.

Figure S4. 200 consecutive cycles of the negative electrolyte with CP-Cu₂CoGeS₄ work electrode

at a scan rate of 50 mV s⁻¹.

Figure S5. Elemental mappings spectrum of the as-prepared GF-Cu₂CoGeS₄ composite electrode.

Electrode	R_s (Ω cm ²)	R_{ct1} (Ω cm ²)	R_{ct2} (Ω cm ²)
GF	20.93	2.61	19.43
$GF-Cu_2CoGeS_4$	7.36	0.37	1.82
GF-Cu ₂ NiGeS ₄	8.20	0.98	4.32
$GF-Cu_2CdGeS_4$	9.54	1.24	27.06
GF-Cu ₂ FeGeS ₄	9.42	3.08	32.57
$GF-Cu_2MnGeS_4$	25.54	3.63	5.14

Table S1 Summary of simulation results from EIS spectra of different electrodes.

Figure S6. Scanning electron microscope (SEM) showing the morphologies of $GF-Cu_2CoGeS_4$ composite electrode after 50 cycles at 20 mA cm⁻² with the 50% SOC; (a) at low magnification; (b) at high magnification.

Figure S7. The cycling performance of the flow battery for the $GF-Cu_2CoGeS_4$ composite electrode; (a) at 40 mA cm⁻² with the 50% SOC; (b) at 20 mA cm⁻² with the 10% SOC.