Electronic Supplementary Information

Titanate Nanotubes Confined Merger of Organic Photocatalysis with TEMPO for Highly Selective Aerobic Oxidation of Sulfides[†]

Xiaoming Ma^a, and Xianjun Lang^{a*}

- ^a Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
- *To whom correspondence should be addressed (X. Lang). E-mail address: xianjunlang@whu.edu.cn.
- [†] TEMPO, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl.

1. Experimental section

1.1 Reagents and solvents

All the reagents were procured from commercial suppliers such as Sigma-Aldrich, Alfa Aesar and TCI, J&K Scientific, etc. The solvents were supplied by Merck, Fischer Scientific and Sinopharm Chemical Reagent Co. Ltd., China. Methanol- D_4 was purchased from Cambridge Isotope Laboratories, Inc. Aeroxide P25 TiO₂ was obtained from Evonik Industries. All the reagents and solvents were directly used without further purification.

2.2 Preparation of H₂Ti₃O₇

The H₂Ti₃O₇ nanotubes were synthesized according to a reported procedure ²⁰. In detail, put 250 mg of P25 TiO₂ into 40 mL of 10 M NaOH solution for 30 min of ultrasonication and then shifted into a Teflon-lined autoclave, afterwards the autoclave was put in oven at 150 °C for 48 h. The Na₂Ti₃O₇ precipitates were collected, and washed with deionized water and 0.1 M HCl solution, after that were cleaned with deionized water and absolute alcohol to remove excess HCl until pH close to 7 was reached. The H₂Ti₃O₇ nanotubes samples were collected by centrifugation and dried in a vacuum oven at 60 °C for 12 h. The H₂Ti₃O₇ nanorods were prepared *via* the same method as the H₂Ti₃O₇ nanotubes except the hydrothermal temperature is 180 °C.

2.3 Characterization of the Materials

Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) images were collected on a JEOL JEM2012-FEF operated at 200 kV. Energy dispersive spectrometry (EDS) analysis was studied. X-ray powder diffraction (PXRD) measurement was carried out using a Rigaku/Miniflex 600 diffractometer with filtered Cu K α radiation, and the data were collected from 3° to 55°. The UV-visible absorbance of ErB and H₂Ti₃O₇ samples were measured on UV-2600 and UV-3600 UV-vis spectrophotometer (Shimadzu, Japan) equipped with a diffuse reflectance measurement accessory, BaSO₄ was used as a reflectance standard. The specific surface areas were determined by N₂ physisorption using an ASAP automated system and the Brunauer-Emmet-Teller (BET) method. Each sample was degassed under vacuum (<1×10⁻⁵ bar) in the Micromertics system at 120 °C for 12 h prior to N₂ physisorption. The Fourier transform infrared spectroscopy (FTIR) spectra of catalysts were performed. The EPR tests were executed on an electron paramagnetic resonance (EPR) spectrometer (JEOL, JES-FA300).

2.4 Typical Procedure for the photocatalytic selective oxidation of sulfides with air

Firstly, 10 mg of H₂Ti₃O₇, 0.5 mmol of thioanisole, 2.5 µmol of TEMPO, 0.2 µmol of ErB, and 1 mL of CH₃OH were mixed in a 10 mL Pyrex vessel. Secondly, the mixture was maintained for 5 min at ultrasonication and stirred for 30 min in dark to reach adsorption equilibrium. Thirdly, the Pyrex vessel was put on a magnetic stirring apparatus and the reactive mixture was stirred at 1500 rpm. Afterwards, irradiated with 520 nm green LED irradiation (3 W × 4) connected to air by a hole in the rubber septum. Finally, the photocatalyst H₂Ti₃O₇ nanotubes were separated from the reaction mixture by centrifugation. And the reaction product was analyzed by gas chromatography equipped with a flame ionization detector (GC-FID, Agilent 7890B) using chlorobenzene as the internal standard. The structures of products were confirmed by

comparison with the retention time of standard samples and further confirmed by gas chromatography-mass spectrometry (GC-MS).

Table S1. Influence of application amount of $H_2Ti_3O_7$ on the selective aerobic oxidation of thioanisole towards the reaction endpoint ^[a]

Entry	H ₂ Ti ₃ O ₇ [mg]	T [min]	Conv. [%] ^[b]	Sel. [%] ^[b]
1	10	20	98	96
2	20	50	94	97
3	30	65	92	98
4	40	80	93	99
5	50	90	94	99

[a] Reaction conditions: thioanisole (0.5 mmol), TEMPO (0.0025 mmol), ErB (2×10⁻⁴ mmol), aerial O₂, green LED irradiation (λ_{max} =520 nm, 3 W × 4), CH₃OH (1 mL). [b] Determined by GC-FID using chlorobenzene as the internal standard, conversion of thioanisole, selectivity of methyl phenyl sulfoxide.

Fig. S1. XRD patterns of P25 TiO_2 , $H_2Ti_3O_7$ nanotubes and $H_2Ti_3O_7$ nanorods.

Fig. S2. The EDS spectrum of $H_2Ti_3O_7$ nanotubes synthesized by treating P25 TiO₂ with NaOH for 48 h at 150 °C

Fig. S3. The FTIR spectrum of H₂Ti₃O₇ nanotubes dried in a vacuum oven at 100 °C

for 3 h

Fig. S4. Thermal gravimetric analysis (TGA) traces of a) $H_2Ti_3O_7$ Nanotubes, b) $H_2Ti_3O_7$ Nanorods and c) P25 TiO₂.