Supporting Information

Hollow-Shell Structured Porous CoSe₂ Microspheres

Encapsulated by MXene Nanosheets for Advanced Lithium

Storage

Lin Hong, ^{1,2} Shunlong Ju, ² Yunhe Yang, ¹ Jiening Zheng, ² Guanglin Xia, ² Zhenguo Huang, ³ Xiaoyun Liu*¹ and Xuebin Yu*²

¹Key Laboratory of Specially Functional Polymeric Materials and Related Technology, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China

² Department of Materials Science, Fudan University, Shanghai 200433, China

³ School of Civil & Environmental Engineering, University of Technology Sydney,

Ultimo, New South Wales 2007, Australia

E-mail: yuxuebin@fudan.edu.cn; liuxiaoyun@ecust.edu.cn

Figure S1 FESEM images of (a) Co-MOF and (b) pure CoSe₂.

Figure S2 TGA of CoSe₂ hollow sphere.

The mass loading of $CoSe_2$ in MOF-derived $CoSe_2$ hollow sphere was determined by TGA in air atmosphere at a heating rate of 10 °C min⁻¹ from 25 to 800 °C, as displayed in Figure S3. During the thermal treatment process, the significant mass loss between 400 and 630 °C could be ascribed to the combustion of carbon, and the oxidation of $CoSe_2$ with conversion of Co_3O_4 and Se. When the temperature was further increased, no mass loss could be observed probably owing to the complete transformation of $CoSe_2$ to Co_3O_4 . Based on the reaction equation: $3CoSe_2$ (s) + $2O_2$ (g) = Co_3O_4 (s) + 6Se (g) and 70.55 wt.% of the original weight lost, the accurate content of $CoSe_2$ in $CoSe_2$ hollow sphere was calculated to be 79.55 wt.%.

Figure S3 FESEM images of CoSe₂@MXene.

Figure S4 FESEM images of MXene flakes.

Figure S5 FESEM images of Co-MOF.

Figure S6 N_2 adsorption-desorption isotherms of $CoSe_2$ spheres.

Figure S7 Pore size distribution of CoSe₂ spheres.

The CoSe₂ spheres possess a specific surface area of 69.19 m²/g, and a pore volume of 0.116 cm³/g at P/P₀ = 0.999.

Figure S8 Rate performance of MXene.

Figure S9 Galvanostatic charge/discharge curves of MXene at various rates.

Figure S10 Galvanostatic charge/discharge curves of pure CoSe₂ at various rates.

Figure S11 Galvanostatic charge/discharge curves of CoSe₂ spheres at various rates.

Figure S12 XPS survey spectrum of CoSe₂@MXene.

Figure S13 Comparison of rate capability of the produced CoSe₂@MXene with other typical anode materials for LIBs.

	Cycling Performance			Rate Performance		
Materials	Capacity	Cycles	Current	Capacity	Current	Reference
	(mAh g ⁻¹)		(A g ⁻¹)	(mAh g ⁻¹)	(A g ⁻¹)	
CoSe ₂ @MXene	910	100	0.2	1051, 856, 763,	0.2, 0.5, 1,	This work
				669, and 465	2, and 5	
CoS _x	1012.1	100	0.5	804, 747, 705,	0.1, 0.3, 0.5,	1
				660, 605, and 478	0.8, 1, and 2	
CoSe ₂ @N-	428	500	1	666, 580, 531,	0.2, 0.5, 1,	2
CF/CNTs				487, 439, and 406	2, 5, and 10	
Ni-CoSe ₂ @NC	645	300	1.5	772, 728, 669,	0.5, 1, 2, 5,	3
				534, and 397	and 10	
CoSe/Co@NC	630	100	0.2	401, 370, 328,	0.2, 0.5, 1,	4
				265, and 185	2, and 5	
CoSe@PCP	675	100	0.2	401, 370, 328,	0.2, 0.5, 1,	5
				265, and 185	2, and 5	
CoSe ₂ @CNF	1405	300	0.2	610, 596, 559,	0.1, 0.2, 0.5,	6
				482, and 393	1, and 2	
NC/CoS ₂	560	50	0.1	710, 570, 490, and	0.1, 0.2, 1,	7
				340	and 2.5	
rGO/CoSe ₂	1577	200	0.2	760, 674, 620,	0.1, 0.25,	8
				555, and 484	0.5, 1, and 2	
CoSe@Carbon	860	100	0.2	787, 755, 722, and	0.2, 0.5, 1,	9
				686	and 2	
NiSe/C	428	50	0.1	460, 435, 384, and	0.05, 0.1,	10
				299	0.2, and 0.5	
Co _{0.85} Se	516	50	0.2	675, 645, 574,	0.1, 0.2, 0.5,	11
nanosheets				493, and 374	1, and 2	
MoSe ₂ @PHCs	681	100	0.5	820, 760, 680, and	0. 5, 1, 2,	12
				640	and 3	
				880, 742, 656,	0.2, 0.5, 1,	13
CoSe@NC	796	100	1	600, 556, 525,	2, 4, 5, 8,	
				495, and 374	and 2	

Table S1 Summary and comparison of cycling and rate performances of recentlyreported TMDs for LIBs.

Figure S14 (a) CV profiles of $CoSe_2@MX$ ene at different scan rates. (b) The plots of log(i) vs log(v) (peak current: *i*, scan rate: *v*), calculated from CV curves. (c) The shaded region shows the CV profile with the pseudocapacitive contribution at a scan rate of 1.5 mV s⁻¹. (d) Contribution ratio of pseudocapacitive at different scan rates.

Figure S15 (a) Nyquist plots of pure CoSe₂, CoSe₂ sphere and CoSe₂@MXene

electrodes, (b) equivalent circuit model.

References

 Xiao, Y.; Hwang, J.-Y.; Belharouak, I.; Sun, Y.-K., Superior Li/Na-storage capability of a carbon-free hierarchical CoS_x hollow nanostructure. *Nano Energy* 2017, 32, 320-328.

2. Yang, J.; Gao, H.; Men, S.; Shi, Z.; Lin, Z.; Kang, X.; Chen, S., CoSe₂ Nanoparticles Encapsulated by N-Doped Carbon Framework Intertwined with Carbon Nanotubes: High-Performance Dual-Role Anode Materials for Both Li- and Na-Ion Batteries. *Adv Sci* **2018**, *5*, (12), 1800763.

3. Liu, W.; Shao, M.; Zhou, W.; Yuan, B.; Gao, C.; Li, H.; Xu, X.; Chu, H.; Fan, Y.; Zhang, W.; Li, S.; Hui, J.; Fan, D.; Huo, F., Hollow Ni-CoSe₂ Embedded in Nitrogen-Doped Carbon Nanocomposites Derived from Metal-Organic Frameworks for High-Rate Anodes. *ACS Appl Mater Interfaces* **2018**, 10, (45), 38845-38852.

4. Zhou, Y.; Tian, R.; Duan, H.; Wang, K.; Guo, Y.; Li, H.; Liu, H., CoSe/Co nanoparticles wrapped by in situ grown N-doped graphitic carbon nanosheets as anode material for advanced lithium ion batteries. *Journal of Power Sources* **2018**, 399, 223-230.

5. Li, J.; Yan, D.; Lu, T.; Yao, Y.; Pan, L., An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries. *Chemical Engineering Journal* **2017**, 325, 14-24.

6. Wang, J.; Wang, H.; Cao, D.; Lu, X.; Han, X.; Niu, C., Epitaxial Growth of Urchin-Like CoSe₂ Nanorods from Electrospun Co-Embedded Porous Carbon Nanofibers and Their Superior Lithium Storage Properties. *Particle & Particle Systems Characterization* **2017**, 34, (10).

Wang, Q.; Zou, R.; Xia, W.; Ma, J.; Qiu, B.; Mahmood, A.; Zhao, R.; Yang, Y.;
Xia, D.; Xu, Q., Facile Synthesis of Ultrasmall CoS₂ Nanoparticles within Thin N-Doped Porous Carbon Shell for High Performance Lithium-Ion Batteries. *Small* 2015, 11, (21), 2511-7.

8. Li, Z.; Xue, H.; Wang, J.; Tang, Y.; Lee, C.-S.; Yang, S., Reduced Graphene

Oxide/Marcasite-Type Cobalt Selenide Nanocrystals as an Anode for Lithium-Ion Batteries with Excellent Cyclic Performance. *ChemElectroChem* **2015**, 2, (11), 1682-1686.

9. Hu, H.; Zhang, J.; Guan, B.; Lou, X. W., Unusual Formation of CoSe@carbon Nanoboxes, which have an Inhomogeneous Shell, for Efficient Lithium Storage. *Angew Chem Int Ed Engl* **2016**, *55*, (33), 9514-8.

10. Zhang, Z.; Shi, X.; Yang, X., Synthesis of core-shell NiSe/C nanospheres as anodes for lithium and sodium storage. *Electrochimica Acta* **2016**, 208, 238-243.

11. Zhou, J.; Wang, Y.; Zhang, J.; Chen, T.; Song, H.; Yang, H. Y., Two dimensional layered Co_{0.85}Se nanosheets as a high-capacity anode for lithium-ion batteries. *Nanoscale* **2016**, *8*, (32), 14992-5000.

12. Yang, X.; Zhang, Z.; Fu, Y.; Li, Q., Porous hollow carbon spheres decorated with molybdenum diselenide nanosheets as anodes for highly reversible lithium and sodium storage. *Nanoscale* **2015**, *7*, (22), 10198-203.

13. Liu, J.; Liang, J.; Wang, C.; Ma, J., Electrospun CoSe@N-doped carbon nanofibers with highly capacitive Li storage. *Journal of Energy Chemistry* **2019**, 33, 160-166.