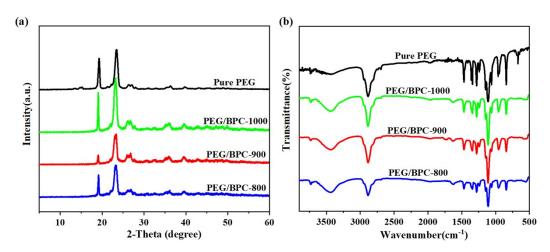
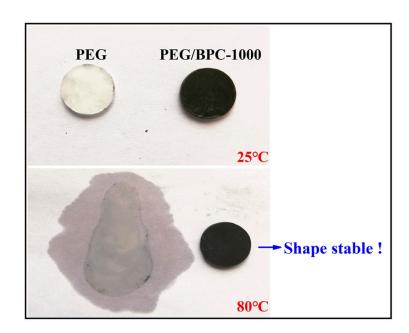
Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information for


Shape-stabilized phase change materials supported by eggplantsderived porous carbon for efficient solar-to-thermal energy conversion and storage

Yaqiong Li, Xiubing Huang*, Yang Li, Zuoshuai Xi, Guangtong Hai, Zhang Tao, and Ge Wang*


Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 10083, PR China

Corresponding authors

Email: xiubinghuang@ustb.edu.cn (X. Huang) and gewang@mater.ustb.edu.cn (G. Wang)

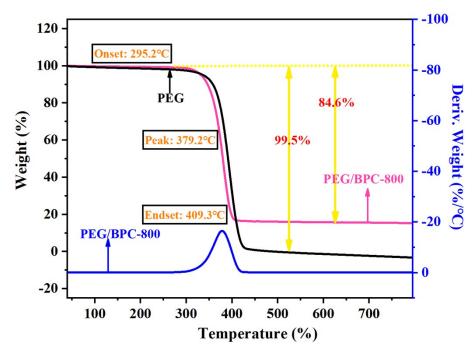


Figure S1. (a) XRD patterns of PEG and the prepared PEG/BPC ss-CPCM (b) FT-IR spectrums of PEG and the prepared PEG/BPC ss-CPCM.

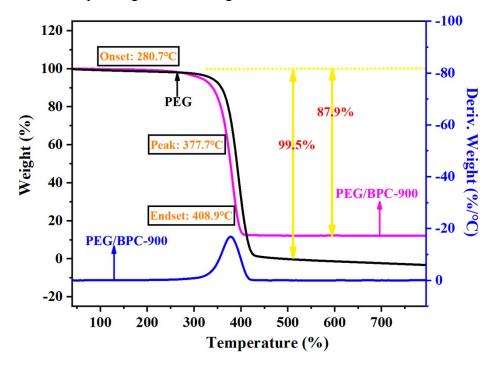


Figure S2. The digital photograph of PEG and PEG/BPC-1000 before and after heating at 80°C.

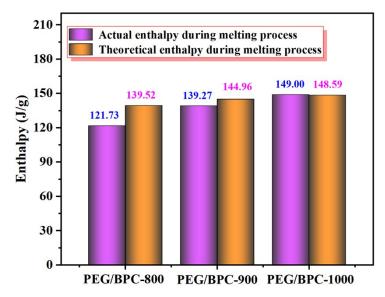

Fig. S2 shows the photographs of the PEG and PEG/BPC-1000 before and after being heating up to 80°C. After being heated to above its melting temperature, the PEG melted completely into liquid. At the same time, the surface of PEG/BPC-1000 was moist due to the melting of the PEG, but no liquid leakage from the composites was observed.

Figure S3. TGA curves of pure PEG and PEG/BPC-800 ss-CPCM and the corresponding DTG thermograms of PEG/BPC-800 ss-CPCM.

Figure S4. TGA curves of pure PEG and PEG/BPC-900 ss-CPCM and the corresponding DTG thermograms of PEG/BPC-900 ss-CPCM.

Figure S5. Comparison of theoretical enthalpy and actual enthalpy during melting process.

The absolute crystallinity (Fc) of the PCMs in the phase change composite materials can be calculated by the formula (1),

$$Fc = \frac{\Delta H_{\text{PCM}}}{\Delta H_{\text{Pure}} \beta} \tag{1}$$

where ΔH_{Pure} and ΔH_{PCM} are the melting latent heat of the core material and the phase change composite material, respectively; β represents the contents of the PEG material in PEG/BPC ss-CPCMs. The crystallinity of PEG/BPC-800, and PEG/BPC-900, and PEG/BPC-1000 ss-CPCMs was calculated to be 87.24%, 96.07%, 100.27% in melting process, as shown in Figure S6.

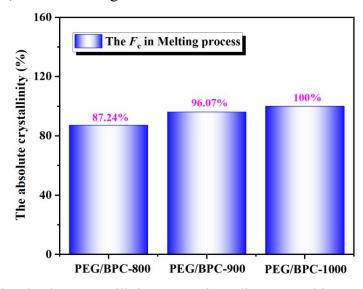


Figure S6. The absolute crystallinity comparison diagram melting and solidify

processes.