Conversion of Magnesium Waste into Complex Magnesium Hydride System: Mg(NH₂)₂-LiH

Hujun Cao,^{a,b*} Claudio Pistidda,^a Maria Victoria Castro Riglos,^{a,c} Anna-Lisa Chaudhary,^a Giovanni Capurso,^a Jo-Chi Tseng,^d Julián Puszkiel,^{a,e} Michael T. Wharmby,^d Thomas Gemming,^f Ping Chen,^b Thomas Klassen^a and Martin Dornheim^a

a. Institute of Materials Research, Materials Technology, Helmholtz-Zentrum Geesthacht GmbH, Max-Planck-Straße 1, 21502, Geesthacht, Germany.

Email: hujun.cao@hzg.de

 b. Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

E-Mail: caohujun@dicp.ac.cn; Tel: +86-411-84379583

c. Department of Metalphysics, Consejo Nacional de Investigaciones Científicas y Técnicas
(CONICET) and Centro Atómico Bariloche, Av. Bustillo km 9500 S.C. de Bariloche, Argentina.

d. Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany.

e. Department of Physicochemistry of Materials, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Centro Atómico Bariloche, Av. Bustillo km 9500 S.C. de Bariloche, Argentina.

f. Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstraße 20, 01069
Dresden, Germany.

of <72 characters]

Figure S 1. TPD-MS signal of H₂ (a) and NH₃ (enlargement of 100 times) for decomposition of the 6th LiMgNH(W)-Abs and LiMgNH-Abs; the samples are heated to 400 °C with a heating rate of 5 °C /min.

Figure S 2. *In situ* XRD of the 2^{nd} hydrogenation of the LiMgNH(W)-Des. The sample is heated to 270 °C with a heating rate of 10 °C/min under 180 bar of H₂.

Figure S 3. *In situ* XRD of the 2nd dehydrogenation of the LiMgNH(W)-Abs. The sample is heated to 270 °C with a heating rate of 10 °C/min under 180 bar of H_2 .

Figure S 4. Thermal conductivities of LiMgNH(W)-Abs and LiMgNH-Abs in powder and pellet stages.

Figure S5. General diffraction patterns derived from the HR-TEM of the magnesium alloy AZ91 under different conditions (a) LiMgH(W); (b) LiMgN(W); (c) LiMgNH(W)-Des; (d) hydrogenated LiMgNH(W)-Abs.