Supporting Information

Fast and efficient upgrading of levulinic acid into long-chain alkyl levulinates fuel additives with tungsten salt catalyst at low

temperature

Songyan Jia^{*a,b,d}, Jiao Ma^a, Dongping Wang^a, Kangjun Wang^{*a,c,d}, Qiang Zheng^a, Chunshan Song^b, Xinwen Guo^b

^a College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China.

^b State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, China.

^c Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China.

^d Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China.

Corresponding Authors:

Email: jiasongyan@126.com (S. Jia); angle_79@163.com (K. Wang)

Fig. S1 Representative GC chromatogram for the esterification of LA and 1-hexanol.

Fig. S2 Representative GC chromatogram for the esterification of LA and 2-hexanol.

Fig. S3 Representative GC chromatogram for the esterification of LA and 3-hexanol.

Fig. S4 Representative GC chromatogram for the esterification of LA and cyclohexanol.

Fig. S5 Representative GC chromatogram for the esterification of LA and 2-ethyl-1-butanol.

Fig. S6 Representative GC chromatogram for the esterification of LA and 1-octanol.

Fig. S7 ¹H NMR spectra of *n*-hexyl levulinate.

Fig. S8 ¹H NMR spectra of hexan-2-yl levulinate.

Fig. S9 ¹H NMR spectra of hexan-3-yl levulinate.

Fig. S10 ¹H NMR spectra of cyclohexyl levulinate.

Fig. S11 ¹H NMR spectra of 2-ethylbutyl levulinate.

Fig. S13 Effect of HfCl₄ loading on the synthesis of HL by the esterification of LA and 1-hexanol. Conditions: 1 mmol LA, 5 mmol 1-hexanol, 50 °C, 30 min. The amount of HfCl₄ was 0.01, 0.03, 0.05, 0.1, 0.15 and 0.2 mmol, respectively.

Fig. S14 Effect of TaCl₅ loading on the synthesis of HL by the esterification of LA and 1-hexanol. Conditions: 1 mmol LA, 5 mmol 1-hexanol, 50 °C, 30 min. The amount of TaCl₅ was 0.01, 0.03, 0.05, 0.1, 0.15 and 0.2 mmol, respectively.

Fig. S15 Effect of initial addition of water on the synthesis of HL by the esterification of LA and 1-hexanol in the presence of HfCl₄. Conditions: 1 mmol LA, 5 mmol 1-hexanol, 0.1 mmol HfCl₄, 50 °C, 30 min. The amount of added water was 0.25 eq, 0.5 eq, 1.0 eq, 2.0 eq and 3.0 eq to the theoretical amount of in-situ formed water by complete esterification.

Levulinate	Combustion constinu	$\Delta_{f}H^{\theta}{}_{m}$ of ester	$\Delta_c H^{\theta}_{\ m}$ of ester	
ester	Combustion equation	(kJ/mol)	(kJ/mol)	
<i>n</i> -Methyl	C = (1 + 0) (1) + 70 (2) + 50 (2) (2) (2) + 50 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	524 55[b]	-3265.45	
levulinate	$C_6H_{10}O_3(1) + /O_2(g) \rightarrow 0CO_2(g) + 5H_2O(1)$	-524.55		
<i>n</i> -Ethyl	C = U = O (1) + 8.5O (m) = 27CO (m) + 6U O(1)	545 10[b]	-3924.11	
levulinate	$C_7\Pi_{12}O_3(1) + 8.5O_2(g) \rightarrow /CO_2(g) + 6\Pi_2O(1)$	-545.19[*]		
n-Propyl	C = U = O (1) + 10O (n) = 2CO (n) + 7U O(1)	565 92[b]	-4582.77	
levulinate	$C_8 \Pi_{14} O_3(1) + 10 O_2(g) \rightarrow 8 CO_2(g) + 7 \Pi_2 O(1)$	-202.82[6]		
<i>n</i> -Butyl	C = U = O (1) + 11 = 5O (n) = 9CO (n) + 8U O(1)	596 47[b]	-5241.43	
levulinate	$C_9\Pi_{16}O_3(1)+11.5O_2(g)\rightarrow 9CO_2(g)+8\Pi_2O(1)$	-380.47		
n-Pentyl	C = U = O (1) + 12O (r) = 10CO (r) + 0U O(1)	607 11[b]	5000.00	
levulinate	$C_{10}H_{18}O_3(1)+15O_2(g) \rightarrow 10CO_2(g)+9H_2O(1)$	-007.11[0]	-3900.09	
n-Hexyl	$C_{\rm e}$ II $O_{\rm e}$ (b) 1450 (c) 1100 (c) 1011 O(b)		-6558.5	
levulinate	$C_{11}\Pi_{20}O_3(1)^{\pm}14.5O_2(g) \rightarrow \Pi_{11}O_2(g)^{\pm}10\Pi_2O(1)$	-028[0]		
<i>n</i> -Octyl	C_{1} H O_{2} (1)+17.50 (c) >1200 (c)+1211 O(1)	670 [c]	7075 1	
levulinate	$C_{13}\Pi_{24}O_3(1)^{+1}/.5O_2(g) \rightarrow 15CO_2(g)^{+1}2H_2O(1)$	-0/0[~]	-/0/3.1	

Table S1 Determination of the combustion calorimetry of various levulinate esters.^[a]

^[a] The calculation of combustion calorimetry of various levulinate esters is according to the reference 44 in the paper. For example, $\Delta_c H^{\theta}_m$ (methyl levulinate)= $6\Delta_f H^{\theta}_m$ (CO₂)+ $5\Delta_f H^{\theta}_m$ (H₂O)- $\Delta_f H^{\theta}_m$ (methyl levulinate). The values of $\Delta_f H^{\theta}_m$ (CO₂) and $\Delta_f H^{\theta}_m$ (H₂O) are -393.5 and -285.8 kJ/mol, respectively.

^[b] These values are checked on a website (https://www.chemeo.com).

^[c] These values are estimated based on that the increase of each methylene group leads to an increment of about 21 kJ/mol according to the data counted from methyl levulinate to pentyl levulinate.

L availingta astan	$\Delta_{c}H^{\theta}{}_{m}$ of ester	Lower heating value	
Levunnate ester	(kJ/mol)	(MJ/L)	
<i>n</i> -Ethyl levulinate	-3924.11	24.8 ^[a]	
<i>n</i> -Butyl levulinate	-5241.43	27.1 ^[a]	
<i>n</i> -Hexyl levulinate	-6558.5	29.4 ^[b]	
<i>n</i> -Octyl levulinate	-7875.1	31.7 ^[b]	

Table S2 Determination of the lower heating values of *n*-hexyl and *n*-octyl levulinates.

^[a] These data are according to the reference 22 in this paper.

^[b] A preliminary standard curve of lower heating value as a function of $\Delta_c H^{\theta}_m$ is established by the parameters of *n*-ethyl and *n*-butyl levulinates. The curve can be expressed in an equation that is y=-572.7478x+10280.0361, where y and x represent $\Delta_c H^{\theta}_m$ and lower heating value, respectively. The lower heating values of *n*-hexyl and *n*-octyl levulinates are estimated by the above standard curve.

			5	
Catalyst	Feedstock	Main product	General conditions	Reference
CrCl ₃	cellulose, glucose	LA	180—200 °C, 180 min	S1
AlCl ₃	cellulose, glucose	LA	180—200 °C, 180 min	S1
FeCl ₃	cellulose, glucose	LA	180—200 °C, 180 min	S1
CuCl ₂	cellulose, glucose	LA	180—200 °C, 180 min	S1
CrCl ₃ +HCl	glucose, fructose	LA	140 °C, 180 min	S2
GaCl ₃	corncob	LA	180 °C, 60 min	S3
WCl ₆	corncob	LA	180 °C, 60 min	S3
SnCl ₄	corncob	LA	180 °C, 60 min	S3
FeCl ₃	glucose	LA	140 °C, 240 min	S4
ZrOCl ₂	agarose	LA+5-HMF	140 °C, 60 min	S5
ZrCl ₄	agarose	LA+5-HMF	140 °C, 60 min	S5
ZnBr ₂ +HCl	glucose	LA	90 °C, 6 min (microwave)	S6
InCl ₃	glucose	LA+5-HMF	180—210 °C, 60 min	S7
FeCl ₃	cellulose	LA	195 °C, 240 min	S8
CrCl ₃	cellulose	LA	195 °C, 240 min	S8
CrCl ₃	LA+methanol	ML	110 °C, 10 min (microwave)	S9
SnCl ₄	LA+methanol	ML	110 °C, 10 min (microwave)	S9
FeCl ₃	LA+methanol	ML	110 °C, 10 min (microwave)	S9
$Fe_2(SO_4)_3$	LA+methanol	ML	110 °C, 10 min (microwave)	S9
AlCl ₃	LA+methanol	ML	110 °C, 10 min (microwave)	S9
$Al_2(SO_4)_3$	LA+methanol	ML	110 °C, 10 min (microwave)	S9
CuCl ₂	5-HMF+ethanol	EL	160 °C, 5 min (microwave)	S10
FeCl ₃	5-HMF+ethanol	EL	160 °C, 5 min (microwave)	S10
AlCl ₃	5-HMF+ethanol	EL	160 °C, 5 min (microwave)	S10
SnCl ₄	5-HMF+ethanol	EL	160 °C, 5 min (microwave)	S10
Fe ₂ (SO ₄) ₃	LA+methanol/ethanol/	ML/EL/	60 °C 240 min	S11
	propanol/butanol	PL/BL	00°C, 240 IIIII	
Al(OTf) ₃ +	glucose/fructose	EI	180 °C 120 min	\$12
H ₂ SO ₄	+ethanol		100 C, 120 IIIII	512
$Al_2(SO_4)_3$	cassava+ethanol	EL	200 °C, 720 min	S13

 Table S3 Representative works on the synthesis of LA and levulinate esters from biomass with metal salt catalysts.

References:

- [S1] L. Peng, L. Lin, J. Zhang, J. Zhuang, B. Zhang and Y. Gong, Catalytic Conversion of Cellulose to Levulinic Acid by Metal Chlorides, Molecules, 2010, 15, 5258-5272.
- [S2] V. Choudhary, S. H. Mushrif, C. Ho, A.Anderko, V. Nikolakis, N. S. Marinkovic, A. I. Frenkel, S. I. Sandler and D. G. Vlachos, Insights into the Interplay of Lewis and Brønsted Acid Catalysts in Glucose and Fructose Conversion to 5-(Hydroxymethyl)furfural and Levulinic Acid in Aqueous Media, J. Am. Chem. Soc., 2013, 135, 3997-4006.
- [S3] P. Zhao, C. Zhou, J. Li, S. Xu and C. Hu, Synergistic Effect of Different Species in Stannic

Chloride Solution on the Production of Levulinic Acid from Biomass, ACS Sustainable Chem. Eng., 2019, 7, 5176-5183.

- [S4] Y. Jiang, L. Yang, C. M. Bohn, G. Li, D. Han, N. S. Mosier, J. T. Miller, H. I. Kenttamäa and M. M. Abu-Omar, Speciation and kinetic study of iron promoted sugar conversion to 5hydroxymethylfurfural (HMF) and levulinic acid (LA), Org. Chem. Front., 2015, 2, 1388-1396.
- [S5] X. He, J. Ma, K. Wang, Z. Xu and S. Jia, Catalytic Synthesis of 5-Hydroxymethylfurfural and Levulinic Acid from Agarose with ZrOCl₂ as Catalyst, Biomass Chem. Eng., 2019, 53, 15-20.
- [S6] V. B. Kumar, I. N. Pulidindia and A. Gedanken, Synergistic catalytic effect of the ZnBr₂– HCl system for levulinic acid production using, microwave irradiation, RSC Adv., 2015, 5, 11043-11048.
- [S7] Y. Shen, J. Sun, Y. Yi, B. Wang, F. Xu and R. Sun, 5-Hydroxymethylfurfural and levulinic acid derived from monosaccharides dehydration promoted by InCl₃ in aqueous medium, J. Mol. Catal. A, 2014, 394, 114-120.
- [S8] C. Chiappe, M. J. R. Douton, A. Mezzetta, L. Guazzelli, C. S. Pomelli, G. Assanelli and A. R. Angelis, Exploring and exploiting different catalytic systems for the direct conversion of cellulose into levulinic acid, New J. Chem., 2018, 42, 1845-1852.
- [S9] Y. Huang, T. Yang, B. Cai, X. Chang and H. Pan, Highly efficient metal salt catalyst for the esterification of biomass derived levulinic acid under microwave irradiation, RSC Adv., 2016, 6, 2106-2111.
- [S10] S. Quereshi, E. Ahmad, K. K. Pant and S. Dutta, Insights into the metal salt catalyzed ethyl levulinate synthesis frombiorenewable feedstocks, Catal. Today, 2017, 291, 187-194.
- [S11] F. P. Martins, F. A. Rodrigues and M. J. Silva, Fe₂(SO₄)₃-Catalyzed Levulinic Acid Esterification: Production of Fuel Bioadditives, Energies, 2018, 11, 1263.
- [S12] J. Dai, L. Peng and H. Li, Intensified ethyl levulinate production from cellulose using a combination of low loading H₂SO₄ and Al(OTf)₃, Catal. Commun., 2018, 103, 116-119.
- [S13] J. Tan, Q. Liu, L. Chen, T. Wang, L. Ma and G. Chen, Efficient production of ethyl levulinate from cassava over Al₂(SO₄)₃ catalyst in ethanol–water system, J. Energy Chem., 2017, 26, 115-120.