Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2020

Gradient Formation and Charge Carrier Dynamics of CuBiI₄ based Perovskitelike Solar Cells

Haili Yu^{1,2}, Busheng Zhang^{1,3}, Ruijuan Qi⁴, Nannan Qu^{1,2}, Chaoliang Zhao¹, Yan Lei^{1*}, Xiaogang Yang¹, Zhi Zheng^{1*}

¹ Key Laboratory for Micro-Nano Energy Storage and Conversion Materials of Henan Province, College of Advanced Materials and Energy, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000, P. R. China.

² College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.

³ School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou, 450046, P. R. China.

⁴ Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241, P. R. China.

*Corresponding Author: zzheng@xcu.edu.cn; leiyan@xcu.edu.cn

Figure S1. (a) CuBiI₄: P3HT thin film (Bi/Cu20 nm); (b) CuBiI₄: PTB7 thin film (Bi/Cu20 nm); (c) Bi/Cu20nm metal thin film. The insets show the corresponding cross-section of the thin films.

The morphology of P3HT and PTB7 coated CuBiI₄ thin films were also evaluated. Figure S1 a and S1 b show the top and cross sections of CuBiI₄: P3HT and CuBiI₄: PTB7 thin film fabricated by Bi/Cu 20 nm film precursor, respectively. Comparing with the CuBiI₄: P3HT thin films, CuBiI₄: PTB7 thin film performed dense and uniform morphology, which may benefit the charge carrier transfer in solar cell devices. The thickness of CuBiI₄: PTB7 thin film was about 500 nm and will be suitable for solar cell devices assembly. Figure S1 c shows the top-view and cross section SEM images of pristine Bi/Cu thin film. The thickness of Bi/Cu thin film is about 80 nm.

Figure S2. J-V curve of the ITO/SnO₂/CuBiI₄/Spiro-OMeTAD/Au device.