Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2020

Supporting Information

C-C Coupling Reactions Promoted by CNT-Supported

Bimetallic Center in Fischer-Tropsch Synthesis

Chi-You Liu and Elise Y. Li*

Department of Chemistry, National Taiwan Normal University

No. 88, Section 4, Tingchow Road, Taipei 116, Taiwan

* Corresponding author E-mail: eliseytli@ntnu.edu.tw

^{*} Corresponding author ORCID: 0000-0003-1206-1110

Figure S1. Optimized structures and the formation energies (E_f , in eV) of different single or bimetallic Fe decorated N-doped (6,6)-CNT surfaces along the (a-e) axial or (f-k) helical directions. The colors of the elements N, C, and Fe are blue, gray, and purple, respectively.

Figure S2. Optimized structures and the formation energies (E_f , in eV) of different bimetallic centers on (a-f) N₆a and (g-l) N₆h surfaces.

Figure S3. Optimized structures of the $[CO + CH_3]$, the $[CO + CH_2]$, and the $[CH_2 + CH_2]$ co-adsorption on different M_1M_2/N_6h surfaces.

Figure S4. The co-adsorption energies (E_{coads} , in eV) of the [CO + CH₃], the [CO + CH₂], and the [CH₂ + CH₂] on different M₁M₂/N₆h surfaces. The labels of N, M₁, or M₂ are plotted in the figure. M_1^{CO} or M_2^{CO} represents the adsorption of CO on the M₁ or M₂ site, respectively.

Figure S5. The correlation of E_a and $|E_{coads}|$ for the [CO + CH₃], the [CO + CH₂], and the [CH₂ + CH₂] reactions on M₁M₂/N₆h surfaces.

Figure S6. Schematic representation of different extent of electron transfer for the $[CO + CH_3]$ adsorbates on M_1M_2/N_6h surfaces.

Figure S7. Partial density of states (PDOS) projection of the $[CO + CH_2]$ adsorbed on the (a) 2Fe, (b) FeCo, (c) FeMn, (d) 2Co, (e) CoMn, and (f) 2Mn/N₆h surfaces. The energy is shifted with respect to Fermi level. The area $E = 0 \sim 2.5$ eV is shaded in green. The colors of elements N, C, O, and H are blue, gray, red, and white, respectively.

Figure S8. The correlation of E_a and π^* for the [CO + CH₂] and the [CH₂ + CH₂] reactions on the M₁M₂/N₆h surfaces.

Table S1. The co-adsorption energies (E_{coads} , in eV) of adsorbates on the M_1M_2/N_6h surfaces. The $M_{1/2}^{CO}$ represents the adsorption of CO at the M_1 or M_2 metal site.

M_1M_2	Sites	CO+CH ₃	CO+CH ₂	CH ₂ +CH ₂
2Fe	$M_{1}^{CO} = M_{2}^{CO}$	-3.08	-4.13	-5.78
EaCa	M^{CO}_{1}	-2.89	-3.58	5.24
FeCo	M^{CO}_2	-2.63	-3.80	-3.24
FeMn	M^{CO}_{1}	-3.06	-4.21	5.96
	M^{CO}_2	-3.16	-4.06	-3.80
2Co	$M_{1}^{CO} = M_{2}^{CO}$	-2.62	-3.36	-4.73
CoMn	M^{CO}_{1}	-2.52	-3.69	5 10
	M^{CO}_2	-2.70	-3.24	-3.12
2Mn	$M_{1}^{CO} = M_{2}^{CO}$	-3.81	-5.03	-6.90

Table S2. The migration pathways, activation energies (E_a , in eV), reaction energies (ΔE , in eV), and the final state energies (E_P , in eV) of the [**CO** + **CH**₃ \rightarrow **COCH**₃] reaction on the M₁M₂/N₆h surfaces. The migration direction is denoted by the arrow.

M_1M_2	Pathways	Ea	ΔΕ	E_p
2Fe	$M_{1}^{CO \leftarrow} M_{1}^{CO \rightarrow}$	1.97	-0.14	-0.14
	$M^{CO\leftarrow}_{1}$	1.59	-0.38	-0.38
E C	$M^{CO \rightarrow}_{1}$	2.23	+0.19	+0.19
FeCo	$M^{CO \rightarrow}_{2}$	1.87	-0.61	-0.35
	$M^{CO \leftarrow}_2$	2.02	-0.15	+0.11
	$M^{CO \leftarrow}_{1}$	1.89	-0.16	-0.06
	$M^{CO \rightarrow}_{1}$	1.95	+0.10	+0.20
Felvin	$M^{CO \rightarrow}_{2}$	2.51	+0.26	+0.26
	$M^{CO\leftarrow}_2$	2.12	+0.09	+0.09
2Co	$M_{1}^{CO \leftarrow} M_{1}^{CO \rightarrow}$	1.71	-0.53	-0.53
	$M^{CO\leftarrow}_{1}$	1.87	-0.13	+0.05
CaMm	$M^{CO \rightarrow}_{1}$	1.62	-0.58	-0.40
CoMn	$M^{CO \rightarrow}_{2}$	2.28	+0.09	+0.09
	$M^{CO\leftarrow}_2$	1.33	-0.44	-0.44
2Mn	$M_{1}^{CO\leftarrow} M_{1}^{CO\rightarrow}$	2.36	+0.14	+0.14

Table S3. The co-adsorption sites, activation energies (E_a , in eV), reaction energies (ΔE , in eV), and the final state energies (E_P , in eV) of the [CO + CH₂ \rightarrow COCH₂] as well as the [CH₂ + CH₂ \rightarrow (CH₂)₂] reactions on the M₁M₂/N₆h surfaces.

M_1M_2	Sites	Ea	ΔE	E _P	M_1M_2	E_a	$\Delta E = E_P$
$\mathrm{CO} + \mathrm{CH}_2 \rightarrow \mathrm{COCH}_2$					$\mathrm{CH}_2 + \mathrm{CH}_2 ightarrow (\mathrm{CH}_2)_2$		
2Fe	$M_{1}^{CO} = M_{2}^{CO}$	1.06	-0.44	-0.44	2Fe	0.77	-2.08
FeCo	M ^{CO} 1	0.56	-0.82	-0.59	FeCo	0.43	-2.43
	M ^{CO} ₂	0.66	-0.73	-0.73			
FeMn	M^{CO}_{1}	0.90	-0.45	-0.45	FeMn	0.47	-2.09
	M ^{CO} ₂	0.85	-0.47	-0.31			
2Co	$M_{1}^{CO} = M_{2}^{CO}$	0.46	-1.18	-1.18	2Co	0.12	-2.92
CoMn	M^{CO}_{1}	0.61	-0.73	-0.73	CoMn	0.14	-2.39
	M ^{CO} ₂	0.53	-0.73	-0.28			
2Mn	$M_{1}^{CO} = M_{2}^{CO}$	1.15	-0.03	-0.03	2Mn	0.74	-1.44

Table S4. The Bader charge populations (q, in |e|) of the M₁M₂/N₆h surfaces. The labels of the atoms refer to Figure S4.

M_1M_2	$q(M_1)$	$q(M_2)$	$q(N_1)$	$q(N_2)$	$q(N_3)$	$q(N_4)$	$q(N_5)$	$q(N_6)$
2Fe	+1.28	+1.28	-2.51	-2.59	-1.98	-2.03	-2.59	-2.61
FeCo	+1.30	+1.00	-2.48	-2.58	-1.94	-1.88	-2.54	-2.56
FeMn	+1.24	+1.57	-2.48	-2.58	-2.03	-2.10	-2.61	-2.63
2Co	+1.05	+1.04	-2.57	-2.67	-1.97	-1.94	-2.56	-2.57
CoMn	+0.97	+1.60	-2.45	-2.54	-1.98	-2.02	-2.62	-2.65
2Mn	+1.51	+1.45	-2.62	-2.59	-2.07	-2.13	-2.61	-2.63

[*]	,						
M_1M_2	$\Delta q(M_1)$	$\Delta q(M_2)$	$\Delta q(\mathrm{A}_1)$	$\Delta q(A_2)$			
	$CO + CH_3$						
2Fe	+0.11	+0.13	-0.26 (CO)	-0.17 (CH ₃)			
FeCo	+0.11	+0.14	-0.29 (CO)	-0.10 (CH ₃)			
FeMn	+0.12	+0.13	-0.27 (CO)	-0.26 (CH ₃)			
2Co	+0.09	+0.09	-0.18 (CO)	-0.08 (CH ₃)			
CoMn	+0.14	+0.06	-0.08 (CH ₃)	-0.38 (CO)			
2Mn	+0.09	+0.20	-0.36 (CO)	-0.24 (CH ₃)			
		CO + CH	2				
2Fe	+0.12	+0.17	-0.27 (CO)	-0.24 (CH ₂)			
FeCo	+0.11	+0.17	-0.28 (CO)	-0.11 (CH ₂)			
FeMn	+0.16	+0.07	-0.18 (CH ₂)	-0.37 (CO)			
2Co	+0.14	+0.09	-0.18 (CO)	-0.12 (CH ₂)			
CoMn	+0.12	+0.18	-0.17 (CO)	-0.34 (CH ₂)			
2Mn	+0.08	+0.21	-0.36 (CO)	-0.34 (CH ₂)			
	$CH_2 + CH_2$						
2Fe	+0.17	+0.16	-0.23	-0.23			
FeCo	+0.16	+0.16	-0.24	-0.10			
FeMn	+0.19	+0.17	-0.22	-0.36			
2Co	+0.12	+0.13	-0.13	-0.12			
CoMn	+0.18	+0.17	-0.12	-0.34			
2Mn	+0.12	+0.19	-0.34	-0.35			

Table S5. The Bader charge population difference (Δq , in |e|) before and after the adsorption of different adsorbates (A₁ and A₂) on the M₁M₂/N₆h surfaces.

	, , ,	5		
Catalysts	$\rm CO + CH_3$	$\rm CO + CH_2$	$CH_2 + CH_2$	Reference
Fe(111)	1.05	1.35	1.06	1
χ-Fe ₅ C ₂ (510)	1.35	1.16	1.03	2
Co(111)	1.37	0.69	0.42	3
Co(0001)	1.19	0.56	0.12	4
Co(10-11)	1.50	1.00	0.47	5
Co(10-10)	1.17	0.60	0.33	6
Co ₂ C(101)	1.18	0.99	0.73	7
Co ₂ C(011)	0.46	0.87	0.55	8
C-Co ₂ C(101)	0.94	0.60	0.42	9
2Co/N ₆ h-CNT	1.71	0.46	0.12	This work
CoMn/N ₆ h-CNT	1.33	0.61	0.14	This work

Table S6. Reported theoretical values of the barriers (E_a , in eV) of the three C-C coupling reactions catalyzed by **2Co/N₆h-CNT**, **CoMn/N₆h-CNT**, and other catalysts in FTS.

Reference

- Li, H. J.; Chang, C. C.; Ho, J. J. Density Functional Calculations to Study the Mechanism of the Fischer-Tropsch Reaction on Fe(111) and W(111) Surfaces. J. Phys. Chem. C 2011, 115, 11045– 11055.
- (2) Pham, T. H.; Qi, Y.; Yang, J.; Duan, X.; Qian, G.; Zhou, X.; Chen, D.; Yuan, W. Insights into Hägg Iron-Carbide-Catalyzed Fischer-Tropsch Synthesis: Suppression of CH₄ Formation and Enhancement of C-C Coupling on χ-Fe₅C₂ (510). ACS Catal. **2015**, *5*, 2203–2208.
- (3) Chen, C.; Wang, Q.; Wang, G.; Hou, B.; Jia, L.; Li, D. Mechanistic Insight into the C₂ Hydrocarbons Formation from Syngas on Fcc-Co(111) Surface: A DFT Study. *J. Phys. Chem. C* 2016, *120*, 9132– 9147.
- Qi, Y.; Yang, J.; Holmen, A.; Chen, D. Investigation of C₁ + C₁ Coupling Reactions in Cobalt-Catalyzed Fischer-Tropsch Synthesis by a Combined DFT and Kinetic Isotope Study. *Catalysts* 2019, *9*, 551.
- (5) Liu, H.; Zhang, R.; Ling, L.; Wang, Q.; Wang, B.; Li, D. Insight into the Preferred Formation Mechanism of Long-Chain Hydrocarbons in Fischer-Tropsch Synthesis on Hcp Co(10-11) Surfaces from DFT and Microkinetic Modeling. *Catal. Sci. Technol.* 2017, *7*, 3758–3776.
- (6) Zhang, R.; Kang, L.; Liu, H.; He, L.; Wang, B. Insight into the C-C Chain Growth in Fischer-Tropsch Synthesis on HCP Co(10-10) Surface: The Effect of Crystal Facets on the Preferred Mechanism. *Comput. Mater. Sci.* 2018, 145, 263–279.
- (7) Zhang, R.; Wen, G.; Adidharma, H.; Russell, A. G.; Wang, B.; Radosz, M.; Fan, M. C₂ Oxygenate Synthesis via Fischer-Tropsch Synthesis on Co₂C and Co/Co₂C Interface Catalysts: How to Control the Catalyst Crystal Facet for Optimal Selectivity. *ACS Catal.* **2017**, *7*, 8285–8295.
- (8) Wang, B.; Liang, D.; Zhang, R.; Ling, L. Crystal Facet Dependence for the Selectivity of C₂ Species over Co₂C Catalysts in the Fischer-Tropsch Synthesis. *J. Phys. Chem. C* **2018**, *122*, 29249–29258.
- (9) Liu, P.; Liang, D.; Zhang, R.; Wang, B. The Formations of C₂ Species and CH₄ over the Co₂C Catalyst in Fischer-Tropsch Synthesis: The Effect of Surface Termination on Product Selectivity. *Comput. Mater. Sci.* 2020, *172*, 109345.