Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2020

Supporting information

Surfactant decorated hydrotalcite-supported polyoxometalates for

aerobic oxidation of 5-hydroxymethylfurfural and monosaccharides

Ping Cao, Ying Li, Yiming Li, Xueyan Zhang, Xiaohong Wang*^a and Zijiang Jiang*^b

^a Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast

Normal University, Changchun 130024, PR China. Fax: 0086-431-85099759; Tel.: 0086-431-

88930042; E-mail address: wangxh665@nenu.edu.cn.

^b Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun 130024, PR China. E-mail

address: zjjiang@ciac.ac.cn.

S1. Materials

S2. Physical measurements

S3. Aerobic oxidation of 5-HMF

S4. Aerobic oxidation of fructose or glucose

S5. Determination of the acidic and basic properties

Fig. S1 IR spectra of Mg₄Al-LDH (a), Mg₄Al-COOH (b), Mg₄Al-NH₂ (c), HPMoV@Mg₁Al-Surf (23) (d), HPMoV@Mg₂Al-Surf (23) (e), HPMoV@Mg₃Al-Surf (23) (f), HPMoV@Mg₄Al-Surf (23) (g), and HPMoV (h)

Fig. S2 IR spectra of HPMoV@Mg₄Al-Surf with different loading amount: Mg₄Al-LDH (a), HPMoV@Mg₄Al-Surf (5) (b), HPMoV@Mg₄Al-Surf (12) (c), HPMoV@Mg₄Al-Surf (17) (d), HPMoV@Mg₄Al-Surf (23) (e), HPMoV@Mg₄Al-Surf (28) (f), and HPMoV (g)

Fig. S3 DR-UV-vis spectra of the HPMoV@Mg₄Al-Surf (5-28)

Fig. S4 Water contact angle of $Mg_4Al-LDH$ (a), Mg_4Al-NH_2 (b), $Mg_4Al-Surf$ (c) and $HPMoV@Mg_4Al-Surf$ (23) (d)

Fig. S5 XRD patterns of $Mg_4Al-LDH$, $Mg_4Al-COOH$, Mg_4Al-NH_2 , $HPMoV@Mg_nAl-Surf$ (23) (n = 1, 2, 3, 4) and HPMoV

Fig. S6 XRD patterns of Mg₄Al-LDH, HPMoV@Mg₄Al-Surf (5-28) and HPMoV

Fig. S7 Nitrogen adsorption-desorption isotherms (a) and pore size distribution profiles according to BJH desorption dV/dD pore volume (b) of Mg₄Al-LDH and HPMoV@Mg₄Al-Surf (5-28)

Fig. S8 The Energy-dispersive spectroscopy (EDX) mapping of HPMoV@Mg₄Al-Surf (23)

Fig. S9 The EDAX of Mg₄Al-LDH (a) and HPMoV@Mg₄Al-Surf (5-28) (b-f)

Fig. S10 IR spectra of pyridine adsorption of HPMoV@Mg_nAl-Surf (23) (n = 1-3) (a-c) and HPMoV@Mg₄Al-Surf (5-28) (d-h)

Fig. S11 IR spectra of HPMoV@Mg₄Al-Surf (5-28) (a-e) and HPMoV@Mg₄Al-Surf (5-28) (a1-e1) after absorption of 5-HMF

Fig. S12 The carbon balance for HPMoV, HPMoV@Mg₄Al-LDH (23) and HPMoV@Mg₄Al-Surf (5-28) for oxidation of 5-HMF. Reaction conditions: 100 mg of 5-HMF, 30 mg of catalyst, 4 mL of DMSO, 140 °C, 1.0 MPa of O_2 , 12 h

Fig. S13 The generation of CO₂ was determined by GC-MS

Fig. S14 The content of DFF varied with time upon HPMoV, HPMoV@Mg₄Al-LDH (5-28) and HPMoV@Mg₄Al-Surf (5-28) at 140 °C with 1.0 MPa of O_2

Fig. S15 Oxidation of 5-HMF in different solvents under the reaction conditions of 100 mg of 5-HMF, 30 mg of catalyst, and 4 mL of solvent at 140 °C for 12 h with 1.0 MPa of O_2

Fig. S16 Oxidation of 5-HMF under different oxygen pressure. Reaction conditions: 100 mg of 5-HMF, 30 mg of catalyst, and 4 mL of DMSO at 140 °C for 12 h

Fig. S17 Optimization of reaction conditions on 5-HMF conversion at atmospheric O_2 (0.1 MPa) as (a) reaction temperature, (b) reaction time, (c) usage of catalyst on the oxidation of 5-HMF. Reaction conditions: 100 mg of 5-HMF, 4 mL of DMSO

Fig. S18 UV-Vis spectrum of the reaction mixture after separating HPMoV@Mg₄Al-Surf (23)

Fig. S19 The structure characterization of reused HPMoV@Mg₄Al-Surf (23). (a) DR-UV-vis, (b) IR,

(c) ³¹P MAS NMR, (d) XPS, (e) SEM, and (f) HRTEM

Table S1 Oxidation of 5-HMF under various reaction conditions by different catalysts

Table S2 Elementary analysis, BET surface area, acid content and base content for HPMoV, Mg_nAl -LDH and HPMoV@Mg_nAl-Surf (n = 1-4)

Scheme S1 Reaction pathways for production of 5-HMF then to DFF from glucose in presence of multi-functional catalysts

2

S1. Materials

All chemicals and solvents were purchased from commercial supplies without further purification. In this paper, $H_5PMo_{10}V_2O_{40}$ (HPMoV) were prepared according to the well-established method^[1] and characterized by IR spectroscopy. Mg_nAl-LDH (n represents Mg: Al = n: 1) with different proportions of magnesium and aluminum were synthesized according to Ref. [2].

S2. Physical measurements

The elemental analysis was determined by a Leeman Plasma Spec (I) ICP-ES. IR spectra (4000-400 cm⁻¹) were recorded on a Nicolet Magna 560 IR spectrometer (KBr disks). UV-vis spectra (200-800 nm) were performed on a Cary 500 UV-vis-NIR spectrophotometer. DR-UV-vis spectra (200-800 nm) were collected on a UV-2600 UV-vis spectrophotometer (Shimadzu). The structure of samples was characterized using a Japan Rigaku Dmax 2000 X-ray diffractometer with Cu K α radiation (λ = 0.154178 nm). The ³¹P MAS NMR were acquired by using a Bruker AM500 spectrometer at 202.5 MHz. XPS spectra were recorded on an Escalab-MK II photoelectronic spectrometer equipped with a micro-focus monochromatic AI Ka X-ray source. SEM micrographs and EDX spectra were obtained using a XL30 ESEM FEG at 25 kV (PhilipsXL-30). EDX was carried out to prove the existence of the Mg, Al, O, P, Mo and V elements. TEM micrographs were measured on a JEM-2100F instrument. Nitrogen adsorption-desorption isotherms and Brunauer-Emmet-Teller (BET) surface area were measured using an ASAP 2010M surface analyzer (the samples were degassed at 100 °C overnight). The acidic and basic properties were detected by a ZDJ-4B automatic potentiometric titrator. The product analysis was detected by using a highperformance liquid chromatography (HPLC) that equipped with a reversed-phase C18 column and a UV detector at the wavelength of 278 nm. Acetonitrile and ultrapure water (V/V = 2: 1) were used as mobile phase with a flow rate of 0.8 mL/min. The total organic carbon (TOC) was measured by a TOC Analyzer (TOC-LCPH, Shimadzu, Japan).

S3. Aerobic oxidation of 5-HMF

Aerobic oxidation of 5-HMF was carried out in Teflon-lined autoclave equipped with a magnetic stirrer. Typically, 100 mg of 5-HMF and 30 mg of catalyst were added into 4 mL of DMSO, then the mixture was heated up to 140 °C. During the reaction, the reactor was maintained at 1.0 MPa of oxygen pressure. After the reaction, the reactor was cooled to room temperature. The catalyst was separated from the mixture by centrifuge, then washed with ethanol several times and dried

in oven at 60 °C for 12 h for reuse. Meanwhile, the reused experiment was carried out as the catalyst was separated by centrifuge and reused without any treatment.

5-HMF conversion = moles of converted 5-HMF/moles of initial 5-HMF × 100 %

DFF yield = moles of DFF/moles of initial 5-HMF × 100 %

S4. Aerobic oxidation of fructose or glucose

Aerobic oxidation of fructose or glucose was carried out in Teflon-lined autoclave equipped with a magnetic stirrer. In the experiment, fructose or glucose (100 mg) and catalyst 30 mg) were added to 4 mL of DMSO, and the mixture was heated up to 140 °C under 0.8 MPa of O_2 . After the reaction, the reactor was cooled to room temperature, then the reused experiment was carried out in accordance with the above method in S3.

S5. Determination of the acidic and basic properties

The total acid content of catalysts was determined by automatic potentiometric titration. 50 mg catalyst was suspended in 50 mL of acetonitrile with stirring vigorously for 3 h. Then the resulting mixture was titrated with the solution of n-butylamine in acetonitrile (0.01 M). The titration endpoint could be detected from the potentiometric titration curve and the total acid content of the catalysts could be calculated. IR spectra of pyridine adsorption was used for recognizing the Lewis and Brønsted acid sites. Pyridine was adsorbed by catalysts for 12 h under the condition of vacuum and 60 °C. The capacity of acidity was calculated by Lambert-Beer formula: A = ($\varepsilon \times W \times c$)/S. (A: absorbance, cm⁻¹, ε : extinction coefficient, m²·mol⁻¹, W: the sample weight, kg, c: the concentration of acid, mmol·g⁻¹, S: the sample disk area, m²). The amount of Lewis and Brønsted acid sites was estimated from the integrated area of the adsorption bands at 1450 and 1540 cm⁻¹, respectively. The base content of the catalysts was measured by using the conductivity titration method. 50 mg catalyst was suspended in 50 mL of diluted 0.001 M HCl with stirring vigorously for 3 h. Then the resulting mixture was titrated with the solution of 0.01 M NaOH. The titration endpoint could be detected by a sudden increase in conductivity.

Fig. S1 IR spectra of Mg₄Al-LDH (a), Mg₄Al-COOH (b), Mg₄Al-NH₂ (c), HPMoV@Mg₁Al-Surf (23) (d), HPMoV@Mg₂Al-Surf (23) (e), HPMoV@Mg₃Al-Surf (23) (f), HPMoV@Mg₄Al-Surf (23) (g), and HPMoV (h)

Fig. S2 IR spectra of HPMoV@Mg₄Al-Surf with different loading amount: Mg₄Al-LDH (a), HPMoV@Mg₄Al-Surf (5) (b), HPMoV@Mg₄Al-Surf (12) (c), HPMoV@Mg₄Al-Surf (17) (d), HPMoV@Mg₄Al-Surf (23) (e), HPMoV@Mg₄Al-Surf (28) (f), and HPMoV (g)

Fig. S3 DR-UV-vis spectra of the HPMoV@Mg₄Al-Surf (5-28)

Fig. S4 Water contact angle of Mg₄Al-LDH (a), Mg₄Al-NH₂ (b), Mg₄Al-Surf (c) and HPMoV@Mg₄Al-

Surf (23) (d)

Fig. S5 XRD patterns of Mg₄Al-LDH, Mg₄Al-COOH, Mg₄Al-NH₂, HPMoV@Mg_nAl-Surf (23) (n = 1, 2,

3, 4) and HPMoV

Fig. S6 XRD patterns of Mg₄Al-LDH, HPMoV@Mg₄Al-Surf (5-28) and HPMoV

Fig. S7 Nitrogen adsorption-desorption isotherms (a) and pore size distribution profiles according to BJH desorption dV/dD pore volume (b) of Mg₄Al-LDH and HPMoV@Mg₄Al-Surf (5-28)

Fig. S8 The Energy-dispersive spectroscopy (EDX) mapping of HPMoV@Mg₄Al-Surf (23)

Fig. S9 The EDAX of Mg₄Al-LDH (a) and HPMoV@Mg₄Al-Surf (5-28) (b-f)

Fig. S10 IR spectra of pyridine adsorption of HPMoV@Mg_nAl-Surf (23) (n = 1-3) (a-c) and

HPMoV@Mg₄Al-Surf (5-28) (d-h)

Fig. S11 IR spectra of HPMoV@Mg₄Al-Surf (5-28) (a-e) and HPMoV@Mg₄Al-Surf (5-28) (a1-e1) after absorption of 5-HMF

Fig. S12 The carbon balance for HPMoV, HPMoV@Mg₄Al-LDH (23) and HPMoV@Mg₄Al-Surf (5-28) for oxidation of 5-HMF. Reaction conditions: 100 mg of 5-HMF, 30 mg of catalyst, 4 mL of DMSO,

140 °C, 1.0 MPa of O₂, 12 h

Fig. S13 The generation of CO_2 was determined by GC-MS

Fig. S14 The content of DFF varied with time upon HPMoV, HPMoV@Mg₄Al-LDH (5-28) and HPMoV@Mg₄Al-Surf (5-28) at 140 °C with 1.0 MPa of O_2

Fig. S15 Oxidation of 5-HMF in different solvents under the reaction conditions of 100 mg of 5-HMF, 30 mg of catalyst, and 4 mL of solvent at 140 °C for 12 h with 1.0 MPa of O_2

Fig. S16 Oxidation of 5-HMF under different oxygen pressure. Reaction conditions: 100 mg of 5-HMF, 30 mg of catalyst, and 4 mL of DMSO at 140 °C for 12 h

Fig. S17 Optimization of reaction conditions on 5-HMF conversion at atmospheric O_2 (0.1 MPa) as (a) reaction temperature, (b) reaction time, (c) usage of catalyst on the oxidation of 5-HMF. Reaction conditions: 100 mg of 5-HMF, 4 mL of DMSO

Fig. S18 UV-Vis spectrum of the reaction mixture after separating HPMoV@Mg₄Al-Surf (23)

Fig. S19 The structure characterization of reused HPMoV@Mg₄Al-Surf (23). (a) DR-UV-vis, (b) IR, (c) ³¹P MAS NMR, (d) XPS, (e) SEM, and (f) HRTEM

Yield Yield Yield Reaction Т Time Catalysts Oxidant Con.% of of of Ref. Condition (°C) (h) DFF % FDCA% FFCA% 1 mmol HMF, **O**₂ 5 3 $Mn_6Fe_1O_x$ 110 97 91 _ _ 5 mL DMF 1.5 MPa 0.5 mmol HMF, **O**₂ Co-Mn/N@C 85 12 99.7 96.1 4 $10 \text{ mL H}_2\text{O}$ 1 bar 63 mg HMF, **O**₂ 100 Cs/MnO_x 12 98.4 94.7 5 10 mL DMF 10 bar 0.2513 g HMF, Air 6 89.3 Au/HAP 130 99.1 6 20 mL CH₃OH 2.4 MPa 0.50 mmol HMF, **O**₂ Pt/Fe₃O₄/rGO 95 0.5 100 98 7 -20 mL H₂O 0.5 MPa MnOx/P25 1mmol 5-HMF, Air 140 2 33 32 8 -30 bar (TiO_2) 10 g ethanol Pd-Au/HT (1: 200 mg HMF, 02 60 6 90 9 99.9 60 mL/min. 4) 50 ml H₂O 0.5 mmol HMF, **O**₂ Pt/PVP 110 5 99.9 99.9 10 10 mL H₂O 1.0 MPa 0.5 mmol HMF, O₂ 130 2.5 90 Au/CeO₂ 99.9 11 0.5 MPa 20 ml H₂O 0.1 g HMF, **O**₂ Pd/CC 140 30 85 12 93 $5 \text{ mL H}_2\text{O}$ 20 mL/min 0.14 M 5-HMF, **O**₂ MgO·CeO₂ 100 9 96 97.8 13 0.9 bar $7 \text{ mL H}_2\text{O}$ 0.3 mmol HMF, O₂ Ru/AC 75, 1 100 92 14 14.5 mL H₂O, 1 bar 0.5 mmol of **O**₂ 8 Au-Ru/rGO HMF, 80 90.9 95.7 15 5 bar 10 ml toluene, Pt-Ni/AC-0.015 g HMF, O₂ 100 15 100 97.5 16 15ALD $3 \text{ mL H}_2\text{O}$ 0.8 MPa 10 mmol HMF, NiFe-LDH 25 98 98 _ 1.5 17 1M KOH 0.5 mmol HMF, 02 NC-T 10 mL 100 4 100 95.1 18 10 bar acetonitrile 0.5 mmol HMF, O₂ Ru/ZrO₂ 120 16 100 97 3 19 10 mL H₂O 10 bar

Table S1 Oxidation of 5-HMF under various reaction conditions by different catalysts

2 mmol HMF

 \bigcap_{n}

	MnCo ₂ O ₄	15 mL toluene
--	----------------------------------	---------------

uene	1.0 MPa

Fe ₃ O ₄ @SiO ₂	0.4 mmol HMF,	O ₂	110	48	92	-	73.6	-	21
1 03040 0.02	5 mL H ₂ O	10 bar			0 -				
MnCo ₂ O ₄	0.2 mmol HMF,	O ₂	100	24	99.9	_	70.9	-	22
	5 mL H ₂ O	1 MPa							
	1 mmol HMF,								
$MnFe_2O_4$	20 ml	-	100	5	99	-	85	-	23
	acetonitrile								
Cu/NG	126 mg HMF,	0,							
TEMPO	15 mL	0.4 MPa	70	8	99.8	99.2	-	-	24
	acetonitrile	0.1 111 4							
MgO·MnO ₂ ·C	0.015 M 5-HMF,	O ₂	110	10	98 9	_	٩ı	_	25
eO ₂	$7 \text{ mL of H}_2\text{O}$	2.0 MPa	110	10	50.5		54		25
	100.8 mg HMF,	۸ir							
$CoPz/g-C_3N_4$	40 mL buffer	All 20 mL/min	25	14	99.6	-	96.1	-	26
	solution	20 111/11111							
$ZnFe_{1.65}Ru_{0.35}$	0.5 mol HMF, 3	O ₂	110	Λ	04	02.2	2.4		27
O ₄	mL DMF	20 mL/min	110	4	94	82.2	3.4	-	27
	2 mmol HMF, 20	Air	120	10	100		00.1		20
Ru/IVINCO ₂ O ₄	mL H₂O	0.7 MPa	120	10	100	-	99.1	-	28
	2 mmol HMF, 10	O ₂		_			06		20
NI _{0.9} Pd _{0.1}	mL H₂O	1.0 MPa	80	4	>99	-	86	_	29
	2.2-2.3 mmol	0							
		0,							
Co/Mn/Br	HMF, 2.5 mL		180	1/6	>99	_	92.9	_	30
Co/Mn/Br	HMF, 2.5 mL HOAc	0.76 MPa	180	1/6	>99	-	92.9	-	30
Co/Mn/Br	HMF, 2.5 mL HOAc 1mol HMF, 4 mL	0.76 MPa O ₂	180	1/6	>99	-	92.9	-	30
Co/Mn/Br α-CuV ₂ O ₆	HMF, 2.5 mL HOAc 1mol HMF, 4 mL DMSO	0.76 MPa O ₂ 1 bar	180 130	1/6 3	>99 100	- 99.9	92.9	-	30 31
Co/Mn/Br α-CuV ₂ O ₆	HMF, 2.5 mL HOAc 1mol HMF, 4 mL DMSO 63 mg HMF, 4	0.76 MPa O ₂ 1 bar O ₂	180 130	1/6 3	>99	- 99.9	92.9	-	30 31
Co/Mn/Br α -CuV ₂ O ₆ V ₂ O ₅ /ceramic	HMF, 2.5 mL HOAc 1mol HMF, 4 mL DMSO 63 mg HMF, 4 mL DMSO	0.76 MPa O ₂ 1 bar O ₂ 40 mL/min	180 130 140	1/6 3 5	>99 100 100	- 99.9 87.5	92.9 - -	- - -	30 31 32
Co/Mn/Br α -CuV ₂ O ₆ V ₂ O ₅ /ceramic	HMF, 2.5 mL HOAc 1mol HMF, 4 mL DMSO 63 mg HMF, 4 mL DMSO 0.2 mmol HMF, 5	O_2 O_2 1 bar O_2 40 mL/min O_2	180 130 140	1/6 3 5	>99 100 100	- 99.9 87.5	92.9 _ _	- -	30 31 32
Co/Mn/Br α -CuV ₂ O ₆ V ₂ O ₅ /ceramic MnO ₂	HMF, 2.5 mL HOAc 1mol HMF, 4 mL DMSO 63 mg HMF, 4 mL DMSO 0.2 mmol HMF, 5 mL H ₂ O	0.76 MPa 0 ₂ 1 bar 0 ₂ 40 mL/min 0 ₂ 1.0 MPa	180 130 140 100	1/6 3 5 24	>99 100 100 ≥99	- 99.9 87.5 -	92.9 - - 91		30 31 32 33
Co/Mn/Br α -CuV ₂ O ₆ V ₂ O ₅ /ceramic MnO ₂	HMF, 2.5 mL HOAc 1mol HMF, 4 mL DMSO 63 mg HMF, 4 mL DMSO 0.2 mmol HMF, 5 mL H ₂ O 200 mg HMF,	0.76 MPa 02 1 bar 02 40 mL/min 02 1.0 MPa 02	180 130 140 100	1/6 3 5 24	>99 100 100 ≥99	- 99.9 87.5 -	92.9 - - 91	- - -	30 31 32 33
Co/Mn/Br α -CuV ₂ O ₆ V ₂ O ₅ /ceramic MnO ₂ CC-SO ₃ H-NH ₂	HMF, 2.5 mL HOAc 1mol HMF, 4 mL DMSO 63 mg HMF, 4 mL DMSO 0.2 mmol HMF, 5 mL H ₂ O 200 mg HMF, 2 mL DMSO	0.76 MPa 02 1 bar 02 40 mL/min 02 1.0 MPa 02 20 mL/min	180 130 140 100 140	1/6 3 5 24 9	>99 100 100 ≥99 85	- 99.9 87.5 - 85	92.9 - - 91 -		30 31 32 33 34
Co/Mn/Br α -CuV ₂ O ₆ V ₂ O ₅ /ceramic MnO ₂ CC-SO ₃ H-NH ₂	HMF, 2.5 mL HOAc 1mol HMF, 4 mL DMSO 63 mg HMF, 4 mL DMSO 0.2 mmol HMF, 5 mL H ₂ O 200 mg HMF, 2 mL DMSO 0.5 mol HMF,	O_2 1 bar O_2 40 mL/min O_2 1.0 MPa O_2 20 mL/min O_2	180 130 140 100 140	1/6 3 5 24 9	>99 100 100 ≥99 85	- 99.9 87.5 - 85	92.9 - 91 -		30 31 32 33 34
Co/Mn/Br α-CuV ₂ O ₆ V ₂ O ₅ /ceramic MnO ₂ CC-SO ₃ H-NH ₂ PMA-MIL-101	HMF, 2.5 mL HOAc 1mol HMF, 4 mL DMSO 63 mg HMF, 4 mL DMSO 0.2 mmol HMF, 5 mL H ₂ O 200 mg HMF, 2 mL DMSO 0.5 mol HMF, 5 mL DMSO	0.76 MPa 02 1 bar 02 40 mL/min 02 1.0 MPa 02 20 mL/min 02 20 mL/min	180 130 140 100 140 140	1/6 3 5 24 9 20	>99 100 100 ≥99 85 90.8	- 99.9 87.5 - 85 88.2	92.9 - - 91 - -		30 31 32 33 34 35
Co/Mn/Br α -CuV ₂ O ₆ V ₂ O ₅ /ceramic MnO ₂ CC-SO ₃ H-NH ₂ PMA-MIL-101 SBA-15-	HMF, 2.5 mL HOAc 1mol HMF, 4 mL DMSO 63 mg HMF, 4 mL DMSO 0.2 mmol HMF, 5 mL H ₂ O 200 mg HMF, 2 mL DMSO 0.5 mol HMF, 5 mL DMSO 0.5 mol HMF	0.76 MPa O ₂ 1 bar O ₂ 40 mL/min O ₂ 1.0 MPa O ₂ 20 mL/min O ₂ 20 mL/min	180 130 140 100 140 140	1/6 3 5 24 9 20	>99 100 100 ≥99 85 90.8	- 99.9 87.5 - 85 88.2	92.9 - 91 - _		30 31 32 33 34 35
Co/Mn/Br α -CuV ₂ O ₆ V ₂ O ₅ /ceramic MnO ₂ CC-SO ₃ H-NH ₂ PMA-MIL-101 SBA-15- Bijmidazole-	HMF, 2.5 mL HOAc 1mol HMF, 4 mL DMSO 63 mg HMF, 4 mL DMSO 0.2 mmol HMF, 5 mL H ₂ O 200 mg HMF, 2 mL DMSO 0.5 mol HMF, 5 mL DMSO 0.5 mol HMF 8 mL 4-	0.76 MPa O_2 1 bar O_2 40 mL/min O_2 1.0 MPa O_2 20 mL/min O_2 20 mL/min O_2	 180 130 140 100 140 140 140 140 140 	1/6 3 5 24 9 20 11	>99 100 100 ≥99 85 90.8 96.9	- 99.9 87.5 - 85 88.2 88.7	92.9 - - 91 - -		30 31 32 33 34 35 36
Co/Mn/Br α-CuV ₂ O ₆ V ₂ O ₅ /ceramic MnO ₂ CC-SO ₃ H-NH ₂ PMA-MIL-101 SBA-15- Biimidazole- Ru	HMF, 2.5 mL HOAc 1mol HMF, 4 mL DMSO 63 mg HMF, 4 mL DMSO 0.2 mmol HMF, 5 mL H ₂ O 200 mg HMF, 2 mL DMSO 0.5 mol HMF, 5 mL DMSO 0.5 mol HMF 8 mL 4- chlorotoluene	0.76 MPa 02 1 bar 02 40 mL/min 02 1.0 MPa 02 20 mL/min 02 20 mL/min 02 20 mL/min	180 130 140 100 140 140 110	1/6 3 5 24 9 20 11	>99 100 100 ≥99 85 90.8 96.9	- 99.9 87.5 - 85 88.2 88.2	92.9 - - 91 - - -		30 31 32 33 34 35 36
Co/Mn/Br α-CuV ₂ O ₆ V ₂ O ₅ /ceramic MnO ₂ CC-SO ₃ H-NH ₂ PMA-MIL-101 SBA-15- Biimidazole- Ru	HMF, 2.5 mL HOAc 1mol HMF, 4 mL DMSO 63 mg HMF, 4 mL DMSO 0.2 mmol HMF, 5 mL H ₂ O 200 mg HMF, 2 mL DMSO 0.5 mol HMF, 5 mL DMSO 0.5 mol HMF 8 mL 4- chlorotoluene 1 mmol HMF.	0.76 MPa O_2 1 bar O_2 40 mL/min O_2 1.0 MPa O_2 20 mL/min O_2 20 mL/min O_2 20 mL/min O_2	180 130 140 100 140 140 110	1/6 3 5 24 9 20 11	>99 100 100 ≥99 85 90.8 96.9	- 99.9 87.5 - 85 88.2 88.7	92.9 - - 91 - - -	- - - - - -	30 31 32 33 34 35 36
Co/Mn/Br α-CuV ₂ O ₆ V ₂ O ₅ /ceramic MnO ₂ CC-SO ₃ H-NH ₂ PMA-MIL-101 SBA-15- Biimidazole- Ru Ru/C	HMF, 2.5 mL HOAc 1mol HMF, 4 mL DMSO 63 mg HMF, 4 mL DMSO 0.2 mmol HMF, 5 mL H₂O 200 mg HMF, 2 mL DMSO 0.5 mol HMF, 5 mL DMSO 0.5 mol HMF 8 mL 4- chlorotoluene 1 mmol HMF, 10 mL H₂O	0.76 MPa O_2 1 bar O_2 40 mL/min O_2 1.0 MPa O_2 20 mL/min O_2 20 mL/min O_2 20 mL/min O_2 20 mL/min	180 130 140 100 140 140 110 120	1/6 3 5 24 9 20 11	>99 100 100 ≥99 85 90.8 96.9 100	- 99.9 87.5 - 85 88.2 88.7	92.9 - - 91 - - - 88		30 31 32 33 34 35 36 37
Co/Mn/Br α-CuV ₂ O ₆ V ₂ O ₅ /ceramic MnO ₂ CC-SO ₃ H-NH ₂ PMA-MIL-101 SBA-15- Biimidazole- Ru Ru/C	HMF, 2.5 mL HOAc 1mol HMF, 4 mL DMSO 63 mg HMF, 4 mL DMSO 0.2 mmol HMF, 5 mL H ₂ O 200 mg HMF, 2 mL DMSO 0.5 mol HMF, 5 mL DMSO 0.5 mol HMF 8 mL 4- chlorotoluene 1 mmol HMF, 10 mL H ₂ O 0.5 mmol HMF	0.76 MPa O_2 1 bar O_2 40 mL/min O_2 1.0 MPa O_2 20 mL/min O_2 20 mL/min O_2 20 mL/min O_2 20 mL/min O_2 0.5 MPa	180 130 140 100 140 140 110 120	1/6 3 5 24 9 20 11 10	>99 100 100 ≥99 85 90.8 96.9 100	- 99.9 87.5 - 85 88.2 88.7 -	92.9 - 91 - - 88		30 31 32 33 34 35 36 37
Co/Mn/Br α-CuV ₂ O ₆ V ₂ O ₅ /ceramic MnO ₂ CC-SO ₃ H-NH ₂ PMA-MIL-101 SBA-15- Biimidazole- Ru Ru/C Au-Pd/ZOC	HMF, 2.5 mL HOAc 1mol HMF, 4 mL DMSO 63 mg HMF, 4 mL DMSO 0.2 mmol HMF, 5 mL H ₂ O 200 mg HMF, 2 mL DMSO 0.5 mol HMF, 5 mL DMSO 0.5 mol HMF 8 mL 4- chlorotoluene 1 mmol HMF, 10 mL H ₂ O 0.5 mmol HMF, 10 mL H ₂ O	0.76 MPa O_2 1 bar O_2 40 mL/min O_2 1.0 MPa O_2 20 mL/min O_2 20 mL/min O_2 20 mL/min O_2 0.5 MPa O_2	180 130 140 100 140 140 110 120 80	1/6 3 5 24 9 20 11 10 4	>99 100 100 ≥99 85 90.8 96.9 100 >99	- 99.9 87.5 - 85 88.2 88.7 -	92.9 - 91 - - 88 >99	- - - - - - - -	30 31 32 33 34 35 36 37 38

Pd/HT-5	0.4 mmol HMF,	O_2	100	8	100	_	99	_	39
Fe₃O₄@C @Pt	15 mg HMF, 0.2 mmol Na ₂ CO ₃	O ₂ 100mL/min	90	4	100	_	100	_	40
Pt/C-O-Mg	0.5 mmol HMF, 10 mL H ₂ O	O ₂ 1.0 MPa	110	12	100	_	97	_	41
FeCo/C	1mol HMF, 2 mL toluene	O ₂ 1.0 MPa	100	6	99	99	_	_	42
Co/Mn/Br	13.2 mmol 5- HMF, 5 mL HOAc	N ₂ /O ₂ = 1/1 (mol/mol)	160	0.5	100	-	78.1	_	43
Bi(NO₃)₃·5H₂ O, cellulose- Cu-NP	126 mg HMF, 10 mL MeCN	Air	80	2	96.5	82	_	_	44
Ni ₃ (BTP) ₂	1.8 mmol HMF, 25 mL H₂O	O ₂ 30 bar	120	24	100	99	_	_	45
SBA-NH ₂ -VO ²⁺ SBA-NH ₂ -Cu ²⁺	100 mg HMF 7 mL 4- chlorotoluene	O ₂ 0.28 MPa	110	12	98.8	62.7	_	_	46
V ₂ O ₅	2.0 mmol HMF 10 mL acetic acid	O ₂ 10 bar	100	4	99	_	_	75	47
N-doped graphene NG-800	1mol HMF, 30 mL acetonitril	O ₂ 1.0 MPa	100	6	100	99.5	_	_	48
NNC-900	0.63 mmol HMF, 10 mL H ₂ O	O₂ 100mL/min	80	48	100	_	80	_	49
GO	2 mmol HMF, 4 mL DMSO	O ₂ 20 mL/min	140	24	100	90	_	-	50
[EMIM] ₄ Mo ₈ O ₂₆	9 mmol HMF, 18 mmol NaOH 20 mL H ₂ O	25 ml 6 % H ₂ O ₂	100	2	96.2	-	92.7	_	51
Ru/CTF	1mmol HMF, 15 mL MTBE	Air 20 bar	80	1	86.3	63.6	_	_	52
Ru/CTF	1mmol HMF, 15 mL H ₂ O	Air 20 bar	140	3	100	0.1	77.6	_	53
C-Fe ₃ O ₄ -Pd	0.4 mmol HMF, 8 mL H ₂ O	O ₂ 30 mL/min	80	4	98.2	-	91.8	_	54
Pt/TiO ₂	2 g HMF, NaHCO₃/5- HMF=2	Air 0.1 MPa	100	6	>99.9	_	>99.9	_	55
	0.5 mmol HMF,	02	۵۵	1.4			0.0		56

	20 ml H ₂ O	0.5 MPa							
Polyaniline- VO(acac) ₂	100 mg HMF, 8 mL 4- chlorotoluene	O ₂ 20 mL/min	110	12	99.2	86.2	_	-	57
VO ₂ - PANI/CNT	1mol HMF, 2 mL DMSO	O ₂ 1.0 MPa	120	11	>99	96	_	_	58
Fe_3O_4 -Co O_x	70 mg HMF, 4 mL DMSO	t-BuOOH 0.5 mL	80	15	97.2	_	68.6	_	59
GO	1mol HMF, 30 mL acetonitrile	_	100	18	100	99.6	_	_	60
GO _{ase} M ₃₋₅ PaoABC	0.3 mmol 5- HMF, 0.3 mL MeCN	Air 1.0 MPa	37	10	100	-	86.9	_	61
Cs ₃ HPMo ₁₁ VO	1mol 5-HMF,	O ₂	110	6	99	99	_	_	62
40	2 mL DMSO	0.8 MPa	110	0	55	55			02
Au-Pd/CNT	0.50 mmol HMF, 20 mL H ₂ O	O ₂ 0.5 MPa	100	12	99	-	99	-	63
Ag-OMS-2	315 mg HMF, 40 mL isopropyl alcohol	Air 15 atm	165	6	99	99	-	-	64
FeIII–POP-1	1.58 mmol HMF, 10 ml H ₂ O	Air 10 bar	100	10	100	-	79	-	65
K-OMS-2	100 mg HMF, 3 mL DMSO	O ₂ 10 mL/min	110	6	99	99	-	-	66
Au/HT	1 mmol HMF, 6 ml H ₂ O	O₂ 50 mL/min	95	7	99	-	99	-	67
Fe ₃ O ₄ /Mn ₃ O ₄	126 mg HMF, 7 mL DMF	O ₂ 20 mL/min	120	4	99.8	82.1	-	-	68
RuCo(OH) ₂ - CeO ₂	126 mg HMF, 7 mL MIBK	O ₂ 20 mL/min	120	12	96.5	82.6	8.9	-	69
	100 mg HMF,	O ₂							
Ru/hydroxya	7 mL	20 mL/min	90	4	100	89.1	9.3	-	70
patite	4-chlorotoluene								

Catalyst	Elementary results (calculated values in parenthesis) ^a /%					Loading amount	S _{BET} (m²/g)	Acidity (mmol/g)			Basicity ^d (mmol/g)
	Р	Мо	V	Al	Mg			Total	B-acidity ^c	L-acidity ^c	-
								acidity ⁵ (mmol/g)	(mmol/g)	(mmol/g)	
HPMoV	1.80	55.20	5.85	-	-	-	3.90	2.66	2.60	-	-
Mg ₁ Al-LDH	-	-	-	18.03	16.31	-	78.5	0.21	-	0.20	0.68
Mg ₂ Al-LDH	-	-	-	13.02	23.38	-	75.4	0.18	-	0.17	0.74
Mg ₃ Al-LDH	-	-	-	10.09	27.45	-	71.2	0.16	-	0.14	0.86
Mg ₄ Al-LDH	-	-	-	8.31	30.00	-	68.6	0.12	-	0.11	0.94
HPMoV@Mg ₁ Al-Surf (23)	0.59	18.04	1.93	8.82	7.95	23.0	36.0	0.73	0.51	0.16	0.11
HPMoV@Mg ₂ Al-Surf (23)	0.63	19.98	2.13	4.92	8.83	23.0	32.6	0.70	0.50	0.14	0.13
HPMoV@Mg₃Al-Surf (23)	0.59	18.70	2.01	4.63	12.35	23.0	29.5	0.67	0.51	0.11	0.14
HPMoV@Mg₄Al-Surf (5)	0.19	5.42	0.54	6.10	21.92	5.0	45.4	0.21	0.08	0.10	0.56
HPMoV@Mg ₄ Al-Surf (12)	0.38	11.39	0.23	5.38	19.25	12.0	38.0	0.37	0.22	0.09	0.42
HPMoV@Mg₄Al-Surf (17)	0.49	14.85	1.57	4.95	17.76	17.0	33.6	0.47	0.34	0.08	0.28
HPMoV@Mg₄Al-Surf (23)	0.57	18.35	1.98	4.52	16.19	23.0	23.4	0.62	0.51	0.07	0.20
HPMoV@Mg ₄ Al-Surf (28)	0.71	20.85	2.23	4.21	15.08	28.0	13.4	0.68	0.57	0.06	0.13

Table S2 Elementary analysis, BET surface area, acid content and base content for HPMoV, Mg_nAl-LDH and HPMoV@Mg_nAl-Surf (n = 1-4)

^aThe elementary results were calculated by the ICP-AES.

^bThe total acidity was measured by potentiometric titration.

^cThe B and L acidity were valued by the IR spectra of adsorbed pyridine and calculated by Lambert-Beer equation.

^dThe basicity was measured by conductivity titration method.

Scheme S1 Reaction pathways for production of 5-HMF then to DFF from

glucose in presence of multi-functional catalysts

Reference

1. G. A. Tsigdinos and C. J. Hallada, Inorg. Chem., 1968, 7, 437-441.

2. D. G. Cantrell, L. J. Gillie, A. F. Lee and K. Wilson, Appl. Catal. A: Gen., 2005, 287, 183-190.

3. H. Liu, X. J. Cao, J. N. Wei, W. L. Jia, M. Z. Li, X. Tang, X. H. Zeng, Y. Sun, T. Z. Lei, S. J. Liu and L. Lin, *ACS Sustainable Chem. Eng.*, 2019, **7**, 7812-7822.

4. H. Zhou, H. H. Xu and Y. Liu, Appl. Catal. B: Environ., 2019, 244, 965-973.

5. Z. L. Yuan, B. Liu, P. Zhou, Z. H. Zhang and Q. Chi, Catal Sci Technol., 2018, 8, 4430-4439.

6. D. K. Mishra, J. K. Cho, Y. J. Yi, H. J. Lee and Y. J. Kim, J. Ind. Eng. Chem., 2019, 70, 338-345.

7. C. M. Zhou, W. R. Shi, X. Y. Wan, Y. Meng, Y. Yao, Z. Guo, Y. H. Dai, C. Wang and Y. H. Yang, *Catal. Today*, 2019, **330**, 92-100.

8. L. F. Chen, W. Y. Yang, Z. Y. Gui, S. Saravanamurugan, A. Riisager, W. R. Cao and Z. W. Qi, *Catal. Today*, 2019, **319**, 105-112.

9. H. A. Xia, J. H. An, M. Hong, S. Q. Xu, L. Zhang and S. L. Zuo, Catal. Today, 2019, 319, 113-120.

10. H. J. Yu, K. A. Kim, M. J. Kang, S. Y. Wang and H. G. Cha, *ACS Sustain. Chem. Eng.*, 2018, **7**, 3742-3748.

11. Q. Q. Li, H. Y. Wang, Z. P. Tian, Y. J. Weng, C. G. Wang, J. R. Ma, C. F. Zhu, W. Z. Li, Q. Y. Liu and L. L. Ma, *Catal. Sci. Technol.*, 2019, **9**, 1570-1580.

12. P. V. Rathod and V. H. Jadhav, ACS Sustain. Chem. Eng., 2018, 6, 5766-5771.

M. Ventura, F. Lobefaro, E. De Giglio, M. Distaso, F. Nocito and A. Dibenedetto, *ChemSusChem*, 2018, **11**, 1305-1315.

14. C. T. Chen, C. V. Nguyen, Z. Y. Wang, Y. Bando, Y. Yamauchi, M. T. S. Bazziz, A. Fatehmulla, W. A. Farooq, T. Yoshikawa, T. Masuda and K. C. W. Wu, *ChemCatChem*, 2018, **10**, 361-365.

15. B. Ma, Y. Y. Wang, X. N. Guo, X. L. Tong, C. Liu, Y. W. Wang and X. Y. Guo, *Appl. Catal. A: Gen.*, 2018, **552**, 70-76.

16. J. S. Shen, H. Chen, K. Q. Chen, Y. Qin, X. Y. Lu, P. K. Ouyang and J. Fu, *Ind. Eng. Chem. Res.*, 2018, **57**, 2811-2818.

W. J. Liu, L. N. Dang, Z. R. Xu, H. Q. Yu, S. Jin and G. W. Huber, *ACS Catal.*, 2018, **8**, 5533-5541.
 Y. S. Ren, Z. L. Yuan, K. L. Lv, J. Sun, Z. H. Zhang and Q. Chi, *Green Chem.*, 2018, **20**, 4946-4956.
 C. M. Pichler, M. G. Al-Shaal, D. Gu, H. Joshi, W. Ciptonugroho and F. Schuth, *ChemSusChem*, 2018, **11**, 2083-2090.

20. D. K. Mishra, J. K. Cho and Y. J. Kim, J. Ind. Eng. Chem., 2018, 60, 513-519.

21. A. Tirsoaga, M. El Fergani, V. I. Parvulescu and S. M. Coman, ACS Sustain. Chem. Eng., 2018, 6, 14292-14301.

22. S. Zhang, X. Sun, Z. Zheng and L. Zhang, Catal. Commun., 2018, 113, 19-22.

23. A. B. Gawade, A. V. Nakhate and G. D. Yadav, Catal. Today, 2018, 309, 119-125.

24. G. Q. Lv, S. W. Chen, H. F. Zhu, M. Li and Y. X. Yang, App. Surf. Sci., 2018, 458, 24-31.

25. F. Nocito, M. Ventura, M. Aresta and A. Dibenedetto, ACS Omega, 2018, 3, 18724-18729.

26. S. Xu, P. Zhou, Z. H. Zhang, C. J. Yang, B. G. Zhang, K. J. Deng, S. Bottle and H. Y. Zhu, *J. Am. Chem. Soc.*, 2017, **139**, 14775-14782.

27. Z. Z. Yang, W. Qi, R. X. Su and Z. M. He, Energ. Fuel., 2016, 31, 533-541.

28. D. K. Mishra, H. J. Lee, J. Kim, H. S. Lee, J. K. Cho, Y. W. Suh, Y. Yi and Y. J. Kim, *Green Chem.*, 2017, **19**, 1619-1623.

29. K. Gupta, R. K. Rai, A. D. Dwivedi and S. K. Singh, ChemCatChem, 2017, 9, 2760-2767.

30. X. B. Zuo, A. S. Chaudhari, K. Snavely, F. H. Niu, H. Zhu and K. J. Martin, *AIChE J.*, 2017, **63**, 162-171.

31. W. Hou, Q. Wang, Z. J. Guo, J. Li, Y. Zhou and J. Wang, *Catal. Sci. Technol.*, 2017, 7, 1006-1016.

32. M. Cui, R. L. Huang, W. Qi, R. X. Su and Z. M. He, RSC Adv., 2017, 7, 7560-7566.

33. E. Hayashi, T. Komanoya, K. Kamata and M. Hara, ChemSusChem, 2017, 10, 654-658.

34. P. V. Rathod, S. D. Nale and V. H. Jadhav, ACS Sustain. Chem. Eng., 2016, 5, 701-707.

35. J. Zhao, J. Anjali, Y. B. Yan and J. M. Lee, ChemCatChem, 2017, 9, 1187-1191.

36. F. Wang, L. Jiang, J. M. Wang and Z. H. Zhang, *Energ. Fuel.*, 2016, **30**, 5885-5892.

37. G. S. Yi, S. P. Teong and Y. G. Zhang, Green Chem., 2016, 18, 979-983.

38. Z. Y. Gui and W. Cao, ChemCatChem, 2016, 8, 3636-3643.

Y. B. Wang, K. Yu, D. Lei, W. Si, Y. J. Feng, L. L. Lou and S. X. Liu, ACS Sustain.Chem. Eng., 2016,
 4, 4752-4761.

40. Y. W. Zhang, Z. M. Xue, J. F. Wang, X. H. Zhao, Y. H. Deng, W. C. Zhao and T. C. Mu, *RSC Adv.*, 2016, **6**, 51229-51237.

41. X. W. Han, L. Geng, Y. Guo, R. Jia, X. H. Liu, Y. G. Zhang and Y. Q. Wang, *Green Chem.*, 2016, **18**, 1597-1604.

42. R. Q. Fang, R. Luque and Y. W. Li, Green Chem., 2016, 18, 3152-3157.

43. X. B. Zuo, P. Venkitasubramanian, D. H. Busch and B. Subramaniam, ACS Sustain. Chem. Eng., 2016, 4, 3659-3668.

44. D. Baruah, F. L. Hussain, M. Suri, U. P. Saikia, P. Sengupta, D. K. Dutta and D. Konwar, *Catal. Commun.*, 2016, **77**, 9-12.

45. C. Lucarelli, S. Galli, A. Maspero, A. Cimino, C. Bandinelli, A. Lolli, J. Velasquez Ochoa, A. Vaccari,
F. Cavani and S. Albonetti, *J. Phys. Chem. C*, 2016, **120**, 15310-15321.

46. L. F. Liao, Y. Liu, Z. Y. Li, J. P. Zhuang, Y. B. Zhou and S. Chen, RSC Adv., 2016, 6, 94976-94988.

47. X. K. Li and Y. G. Zhang, Green Chem., 2016, 18, 643-647.

48. G. Q. Lv, H. L. Wang, Y. X. Yang, X. Li, T. S. Deng, C. M. Chen, Y. L. Zhu and X. L. Hou, *Catal. Sci. Technol.*, 2016, **6**, 2377-2386.

49. C. V. Nguyen, Y. T. Liao, T. C. Kang, J. E. Chen, T. Yoshikawa, Y. Nakasaka, T. Masuda and K. C.W. Wu, *Green Chem.*, 2016, **18**, 5957-5961.

50. G. Q. Lv, H. L. Wang, Y. X. Yang, T. S. Deng, C. M. Chen, Y. L. Zhu and X. Hou, *Green Chem.*, 2016, **18**, 2302-2307.

51. S. Li, K. M. Su, Z. H. Li and B. W. Cheng, Green Chem., 2016, 18, 2122-2128.

52. J. Artz, S. Mallmann and R. Palkovits, ChemSusChem, 2015, 8, 672-679.

53. J. Artz and R. Palkovits, ChemSusChem, 2015, 8, 3832-3838.

54. N. Mei, B. Liu, J. D. Zheng, K. L. Lv, D. G. Tang and Z. H. Zhang, *Catal. Sci. Technol.*, 2015, **5**, 3194-3202.

55. H. Ait Rass, N. Essayem and M. Besson, ChemSusChem, 2015, 8, 1206-1217.

56. C. M. Zhou, W. P. Deng, X. Y. Wan, Q. H. Zhang, Y. H. Yang and Y. Wang, *ChemCatChem*, 2015,
 7, 2853-2863.

57. F. H. Xu and Z. H. Zhang, *ChemCatChem*, 2015, 7, 1470-1477.

58. Y. Y. Guo and J. Z. Chen, ChemPlusChem, 2015, 80, 1760-1768.

59. S. G. Wang, Z. H. Zhang and B. Liu, ACS Sustain. Chem. Engin., 2015, 3, 406-412.

G. Q. Lv, H. L. Wang, Y. X. Yang, T. S. Deng, C. M. Chen, Y. L. Zhu and X. L. Hou, ACS Catal., 2015,
 5, 5636-5646.

61. S. M. McKenna, S. Leimkühler, S. Herter, N. J. Turner and A. J. Carnell, *Green Chem.*, 2015, **17**, 3271-3275.

62. R. L. Liu, J. Z. Chen, L. M. Chen, Y. Y. Guo and J. W. Zhong, *ChemPlusChem*, 2014, 79, 1448-1454.

63. X. Wan, C. Zhou, J. Chen, W. Deng, Q. Zhang, Y. Yang and Y. Wang, *ACS Catal.*, 2014, 4, 2175-2185.

64. G. D. Yadav and R. V. Sharma, Appl. Catal., B: Environ., 2014, 147, 293-301.

- 65. B. Saha, D. Gupta, M. M. Abu-Omar, A. Modak and A. Bhaumik, J. Catal., 2013, 299, 316-320.
- 66. Z. Z. Yang, J. Deng, T. Pan, Q. X. Guo and Y. Fu, Green Chem., 2012, 14, 2986-2989.
- 67. N. K. Gupta, S. Nishimura, A. Takagaki and K. Ebitani, Green Chem., 2011, 13, 824-827.
- 68. B. Liu, Z. H. Zhang, K. L. Lv, K. J. Deng and H. M. Duan, Appl Catal A, 2014, 472, 64-71.
- 69. Y. M. Wang, B. Liu, K. C. Huang and Z. H. Zhang, *Ind Eng Chem Res.*, 2014, **53**, 1313-1319.
- 70. Z. H. Zhang, Z. L. Yuan, D. G. Tang, Y. S. Ren, K. L. Lv and B. Liu, *ChemSusChem*, 2014, **7**, 3496-3504.