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Figure and Table captions:

Figure S1 GC spectra of reaction mixture (from FAOL-to-GVL conversion) obtained
from different metal salts at 180 °C for 6 h.

Figure S2 Effect of reaction solvent on the tandem synthesis of GVL from FAOL.
Reaction conditions: 2 mmol FAOL, 0.2 g ZrOCl,-8H,0, 12 mL solvent, 200 °C, 6 h.
Figure S3 GC spectra of reaction mixture (from FF-to-GVL conversion) obtained
from different reaction times at 180 °C (a); GC spectra of reaction mixture (from FF-
to-GVL conversion) obtained from at different reaction temperatures with a reaction
time of 8 h.

Figure S4 GVL yield profiles of the reaction mixture with or without ZrOCl,-8H,0
catalyst (removed after 1 h) at 200 °C. Reaction conditions: 2 mmol FAOL, 0.2 g
catalyst, 12 mL 2-propanol.

Figure S5 Recycling test in the transfer hydrogenation of FF to FAOL with ZrO,-(C).
Reaction conditions: 2 mmol FF, 0.1 g ZrO,-(C), 10 mL 2-propanol, 170 °C, 3 h.
Figure S6 The SEM images of ZrO,-(P) (prepared by precipitation method).

Figure S7 Images of contact angle of ZrO,-(C) catalyst (A) and ZrO,-(P) catalyst (B).
Table S1 Conversion of furfural (FF) or furfuryl alcohol (FAOL) into GVL over
heterogeneous catalysts.

Table S2 Activity comparison in the conversion of levulinate into GVL with using

alcohol as H-donor over Zr-based heterogeneous catalysts.
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Figure S1 GC spectra of reaction mixture (from FAOL-to-GVL conversion) obtained

from different metal salts at 180 °C for 6 h.
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Figure S2 Effect of reaction solvent on the tandem synthesis of GVL from FAOL.
Reaction conditions: 2 mmol FAOL, 0.2 g ZrOCl,-8H,0, 12 mL solvent, 200 °C, 6 h.
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Figure S3 GC spectra of reaction mixture (from FF-to-GVL conversion) obtained

from different reaction times at 180 °C (a); GC spectra of reaction mixture (from FF-
to-GVL conversion) obtained from at different reaction temperatures with a reaction

time of & h.
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Figure S4 GVL yield profiles of the reaction mixture with or without ZrOCl,-8H,0

catalyst (removed after 1 h) at 200 °C. Reaction conditions: 2 mmol FAOL, 0.2 g

catalyst, 12 mL 2-propanol.
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Figure S5 Recycling test in the transfer hydrogenation of FF to FAOL with ZrO,-(C).
Reaction conditions: 2 mmol FF, 0.1 g ZrO,-(C), 10 mL 2-propanol, 170 °C, 3 h
(after each run, the used catalyst was collected by centrifugation, washed with ethanol

and then calcinated at 550 °C in air for 2 h).
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Figure S6 The SEM images of ZrO,-(P) (prepared by precipitation method).
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Figure S7 Images of contact angle of ZrO,-(C) catalyst (A) and ZrO,-(P) catalyst (B).
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Table S1 Conversion of furfural (FF) or furfuryl alcohol (FAOL) into GVL over
heterogeneous catalysts.

Temp. Time  Conv. Yield

Entry  Substrate Catalyst H-donor Ref.
(°C) (h) (%) (%)
12 FAOL PDVB-IL + Co/TiO, H, (3MPa) 115;); 12+6 >99 69 S1
2 FAOL y-Fe,03;-HZSM-5 2-propanol 130 8 100 97 S2
3 FF Zr-Beta + Al-MFI-ns 2-butanol 120 24 100 62 S3
4 FF ZrAl-TUD 2-butanol 120 24 88 1 S4
5 FF Au/ZrO, + ZSM-5 2-propanol 120 24 100 71.5 S5
6 FF Sn-Al-Beta 2-butanol 180 24 100 60.5 S6
7 FF Zr-Al-Beta 2-propanol 170 24 100 22.6 S7
8 FF Meso-Zr-Al-beta 2-propanol 120 24 99 90 S8
9 FF 30 TiOy/beta-NS 2-butanol 90 40 83 44 S9
10 FF Hf-MOF-808 + Al-Beta 2-butanol 120 6 98 51 S10
11 FF ZrO,-SBA-15 2-propanol 170 7 100 37 S11
12 FF HPW/Zr-Beta 2-propanol 180 24 100 68 S12
13 FAOL ZrOCl,-8H,0 2-propanol 200 6 >99 63.3 This work
14 FF ZrOCl,-8H,0 2-propanol 200 8 >99 52.1 This work

3 The reaction was firstly conducted over PDVB-IL at 150 °C for 12 h, and then conducted over
Co/TiO; at 130 °C for 6 h.
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