1	Supporting Information for
2	In situ study of competitive adsorption of ions at organic-aqueous two
3	phase interface: The essential role of Hofmeister effect
4	
5	Pan Sun, ^{b,c} Kun Huang, ^{*a,b} and Huizhou Liu ^b
6	
7	a School of Metallurgical and Ecological Engineering, University of Science and
8	Technology Beijing, Beijing 100083, P.R. China.
9	b. CAS Key Laboratory of Green Process and Engineering, Institute of Process
10	Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China.
11	c. University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
12	
13	
14	
15	
16	
17	* Corresponding Author:
18	Prof. Dr. Kun HUANG
19	30 Xueyuan Road, Haidian Distinct, Beijing 100083, P.R. China
20	Email: huangkun@ustb.edu.cn
21	Tel: 86-10-62332926, Fax: 86-10-62332926
22	Details of molecular dynamic simulations S1

The aqueous box containing different concentration of ions was constructed in 1 2 a box with the size of $70 \times 70 \times 70$ Å³. The components in the systems were given in the Table S1 in the supporting information. First, the energies of the initial 3 configuration in simulation boxes were minimized by using the steepest descent 4 algorithm. Afterward, the reasonable size of simulation box was obtained with 1 5 ns constant-NPT simulation (time step 1 fs). Then, the pre-equilibrium of system 6 was conducted with 0.5 ns constant-NVT simulation (time step 1 fs). Finally, two 7 dichloromethane organic boxes with a thickness of 50 Å were added at the both 8 sides of aqueous box. A constant-NVT simulation was performed for 50 ns to 9 make sure that systems reached the equilibrium. Langevin thermostat was used 10 to control temperature at 298 K.¹ Langevin barostat was used to control pressure 11 at 1 atm.² The longrange electrostatic interactions was calculated by using 12 particle mesh ewald (PME) method.² Lennard-Jones (LJ) pair potentials were 13 evaluated within a cutoff of 1.2 nm. Lorentz-Berthelot rules was used to calculate 14 the cross-interaction parameters.³ VMD was used to analyze the trajectory of 15 simulation.⁴ 16

1	
т	

2

3

			1	5	U
Components	Water	Na ⁺	CrO ₄ ²⁻	X ^a	CH ₂ Cl ₂
CrO ₄ ²⁻ -SO ₄ ²⁻	9999	1300	50	600	4000
CrO ₄ ²⁻ -Cl ⁻	9999	700	50	600	4000
CrO ₄ ²⁻ -Br-	9999	700	50	600	4000
CrO ₄ ² -NO ₃ -	9999	700	50	600	4000
CrO ₄ ²⁻ -I ⁻	9999	700	50	600	4000
CrO ₄ ²⁻ -ClO ₄ ⁻	9999	700	50	600	4000
CrO ₄ ²⁻ -SCN ⁻	9999	700	50	600	4000

Table S1. Number of different components in the systems investigated.

4 a) X represent SO_4^{2-} , Cl⁻, Br⁻, NO₃⁻, l⁻, ClO₄⁻, SCN⁻, in different systems.

5

Figure S2. The UV-visible attenuated total reflection spectroscopy of Na₂CrO₄
solutions with different concentration of various salt ions (curves 1, 2, 3, 4, 5, 6
represent different salts (Na₂SO₄, NaCl, NaBr, NaNO₃, NaI, NaClO₄, NaSCN)
concentration of 0, 0.04, 0.1, 0.15, 0.3, 0.5 mol/L, respectively, the concentration of
chromate ions in the aqueous solutions were 5 mmol/L, aqueous pH were 12).

8

9 Figure S3. The UV-visible attenuated total reflection spectroscopy of salt solutions with
10 various salt ions and corresponding ATR-UV absorbance for different salt ions. (The
11 concentration of salt ions in the aqueous solutions were 0.5 mol/L, aqueous pH were
12 12)

References:

3	[1] S. E. Feller, Y. Zhang, R. W. Pastor, B. R. Brooks, Constant-pressure
4	molecular-dynamic simulation-the langevin-piston method, J. Chem. Phys. 103
5	(1995) 4613–4621.
6	[2] T. Darden, D. York, L. Pedersen, Particle mesh ewald-an n.log(n) method
7	for ewald sums in large systems, J. Chem. Phys. 98 (1993) 10089-10092.
8	[3] J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular theory of gases and
9	liquids; Wiley: New York, 1954, 656.
10	[4] W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics J.
11	Mol. Graph. 14 (1996) 33–38.