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1 Materials and characterization

1.1 Materials

Figure S1 shows GPC chromatograms for the samples synthesized.
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(a) (b)

(c) (d)

Figure S1: GPC chromatograms: (a) backbone length sweep for long side chains; (b) back-
bone length sweep for short side chains; (c) side chain sweep; (d) sweep for 5-norbornene-2-
(methylbenzoate).
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1.2 Intrinsic viscosity

Figure S2: Viscosity measurements for an select set of bottlebrush polymers fitted using the
Huggins (black) and Kraemer (red) equations. Labels above each plot correspond to the
bottlebrush sample used to collect the data in each plot. The value of both fits extrapolated
to zero is included in each plot.

Data collected from the two Cannon-Fenske capillary viscometers were processed and

fitted according to the Huggins equation

ηsp
C

= [η] + kh[η]2C (1)

and the Kraemer equation
ln ηrel
C

= [η] + kk[η]2C. (2)

In eq (1) and eq (2), [η], ηsp, and ηrel are the intrinsic, specific, and relative viscosities of

the sample, respectively; kh and kk are the fitting parameters for the Huggins and Kraemer

equations, respectively; C is the concentration of the sample. Fits calculated using these two

equations were extrapolated to zero concentration to determine the intrinsic viscosity (see

Figure S2 for representative fits). Additional viscosity data can be provided upon request.
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1.3 Hydrodynamic radius

Figure S3: Autocorrelation data extracted from the Zetasizer software package for a sample
set of data (black). Data were fitted according to a modified version of eq (4) (red). All
samples presented were at concentrations of 12 mg/mL.

Dynamic light scattering was used to determine the hydrodynamic radius of the molecules

synthesized as part of this study. Measurements were conducted using a commercially avail-

able Malvern Zetasizer Nano S90 and the resulting intensity data and autocorrelation func-

tion were processed using the software package provided by Malvern for running the instru-

ment. The autocorrelation function is given by

g(2) (τ) =
〈I(t)I(t+ τ)〉
〈I(t)〉2

, (3)

where g(2) is the correlation coefficient, I is the intensity of the scattered light, t is the

time, and τ is the time offset. The Zetasizer software fit this data to a set of exponential

decay functions according to the method of cumulants. While it is difficult to replicate this

process manually, it is possible to check the results generated by the program by fitting the

autocorrelation function to a single exponential decay function

g(2) (τ) = A exp (−Γτ) + b, (4)

where A and b are fitting parameters and Γ is the decay coefficient. Representative fits using
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Figure S4: Hydrodynamic radius Rh as a function of concentration for a set example fitted
using a second degree power law expansion. For most of the samples, measurements were
performed from 4 mg/mL to 12 mg/mL. Zero concentration limits are labeled within each
plot.

eq (4) are shown in Figure S3. The decay coefficient is directly related to the diffusivity D

and the scattering wave vector q via the equation

Γ = q2D. (5)

Based on the conditions under which this measurement is performed, q is calculated to

be 0.0303 nm−1. As can be seen from Table S1, the diffusivity calculated from the single

exponential fit is very close to that of the method of cumulants. Minor differences in the

calculated diffusivity are attributed to the differences in fitting technique as the method

of cumulants used by the Zetasizer software also calculates the relative dispersity of the

sample. Based on this comparison, it is reasonable to conclude that the results generated by

the Zetasizer software package are an accurate representation of the data and can be used

to calculate the relative size and dispersity of the bottlebrush polymer.

The hydrodynamic radius is calculated from the diffusivity constant through the appli-

5



Table S1: Diffusivity calculated by applying a single exponential fit to the autocorrelation
function and the diffusivity calculated by the Zetasizer software using the method of cumu-
lants.

Sample q Dfit DDLS

(nm−1) (µm2/s) (µm2/s)

CBB268PLA30 0.0303 14.5 15.5
CBB512PLA30 0.0303 17.7 18.1
CBB1000PLA30 0.0303 22.1 22.6

cation of the Stokes-Einstein relation

D =
kBT

6πηsRh

,

where kB is the Boltzmann constant, T is the temperature of the sample during the mea-

surement, and ηs is the viscosity of the solvent.

Both D and Rh are known to vary as a function of the concentration of the sample. As

such, it is necessary to remove any concentration dependence from these values by extrapo-

lating D and Rh to the limit of infinite dilution. The relation between Rh and concentration

is assumed to be a power series of the form

Rh = R0 + aC + bC2 + · · · , (6)

where R0 is the hydrodynamic radius in the limit of infinite dilution, and a and b are series

coefficients. Fitting the experimentally determined hydrodynamic radii to eq (6) (truncated

after the quadratic term) provides a direct determination of the Rh at zero concentration.

Representative fits using this scheme are shown in Figure S4.
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2 Simulation method

Nsc

Nbb

σ = 2a

Figure S5: Schematic of our computational model model for a bottlebrush showing the
architectural parameters.

Figure S5 shows a schematic for our computational model. The backbone comprises Nbb

beads, with a side chain of Nsc beads attached to each backbone bead. The connectivities

between the beads are represented by finitely extensible nonlinear elastic (FENE) springs.

The potential for the spring force is:

Us = −1

2
ksr

2
max log

[
1−

(
rij
rmax

)2
]
, rij < rmax. (7)

Here, the spring constant is ks = 30ε/σ2 and the maximum spring extension is rmax = 1.5σ,

where rij is the distance between two connecting beads and σ and ε are the length and

energy parameters, respectively.1

Excluded volume interaction among the beads is modeled by the truncated and shifted
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Lennard-Jones potential:

Uev =


4ε

[(
σ
rij

)12

−
(
σ
rij

)6
]
− 4ε

[(
σ
rcut

)12

−
(

σ
rcut

)6
]
, rij < rcut

0, otherwise.
(8)

For simulations of bottlebrush polymers in an athermal solvent, we set rcut = 21/6σ, which

makes Uev purely repulsive (also called the Weeks-Chandler-Anderson potential2); for the

non-athermal case we use rcut = 2.5σ.

In addition, we also impose a bending penalty on only the backbone beads via the po-

tential:

Ub = kb (1− cos θij) , (9)

where kb = 0.5kT and θij is defined such that cos θij = ûj · ûi, where ûi and ûj are the unit

vectors along consecutive backbone bonds. Note that a bending potential for the backbone

beads is not strictly necessary for a generic flexible bottlebrush model, we include it because

the experimental system in this study involves bottlebrushes whose backbones (PNB) are

significantly stiffer than their side chains (PLA).

The beads are assigned a hydrodynamic radius a and a drag coefficient ζ, representing

the friction of a bead. We assume that a = σ/2 and ζ = 6πηa, where η is the solvent

viscosity.

From the Stokes-Einstein relation, the bead diffusivity is kBT/ζ and the bead diffusion

time is τ = ζa2/kT , where kB is the Boltzmann constant and T is the absolute temperature.

We choose a as the unit of length, kBT as the unit of energy, and τ as the unit of time. Thus

the unit of force is kBT/a and the unit of diffusivity is kBT/ζ.

We use a combination of Brownian Dynamics (BD) and Monte Carlo (MC) to evolve

the bead positions. The BD position update is via the discretized stochastic differential

equation:

R(t+ δt) = R(t)−D(t) · ∇U(t)δt+
√

2δt D1/2 · x, (10)

8



where R is the column vector of all bead positions, D is the 3N × 3N diffusivity tensor (N

being the total number of beads), U = Us + Uev + Ub is the total interaction potential, δt

is the time step, and x is a column vector of length 3N containing random numbers drawn

from a normal distribution N (0, 1). The third term
√

2δt D1/2 · x represents displacement

only due to Brownian motion. The right hand side of the above equation is evaluated using

the positions at time t and left hand side gives the bead positions at time t+ δt. Note that

eq (10) is in non-dimensionalized form with respect to the units mentioned in the preceding

paragraph. Furthermore, for computational expediency we neglect hydrodynamic interaction

(HI) between the beads, therefore the diffusivity tensor D degenerates to the identity matrix.

For the MC part, we use two moves – (i) backbone pivot and (ii) side chain double

bridging. The pivot move involves two steps – (a) a backbone bead is chosen randomly,

which divides the bottlebrush molecule into two parts and acts as the pivot point; (b) the

shorter (in terms of backbone length) part, along with the side chains attached to it, is rotated

about the pivot point by an angle chosen from the uniform distribution U(0, 2π). The double

bridging move proceeds as follows: (a) two side chains sci and scj are chosen randomly; (b)

bonds connecting beads k and k+1 on each chain are broken, where k ∈ [1, Nsc]; (c) two new

bonds are formed – between bead k of chain sci and bead k + 1 of chain scj, and between

bead k of chain scj and bead k + 1 of chain sci. The acceptance of both pivot and double

bridging moves are governed by the Metropolis criterion.

A simulation run for a given condition starts with equilibration, using the slow pushoff

method descibed by Auhl et al3 (originally in the context of polymer melts), but applied

to a single molecule. Six independent trajectories were generated for each case. The time

step δt for advancing the beads was 10−4τ . A pivot move was performed after every 50

BD time steps and a double bridging sweep was performed after every 11 BD time steps.

A sweep involves performing the double-bridging move described earlier repeatedly so as to

cover approximately half of the total number of beads. The total duration of all trajectories

was 108 time steps or more. We checked the approach to equilibrium by monitoring global
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size measures of the whole bottlebrush (R2
g and Rh) as well as that of the backbone and

side chains separately. Sample trajectories are shown in Figure S7. Properties calculated

subsequently were averaged over all the trajectories. Errors analysis was performed using by

the block-averaging procedure.

2.1 Calculation of Rh and [η]

The diffusion coefficient we calculated is the so-called Kirkwood diffusivity:4

DK =
1

3N2

∑
i

∑
j

Tr〈Dij〉, (11)

where Dij is the Rotne-Prager-Yamakawa (RPY) tensor,5,6 which accounts for hydrodynamic

interaction between bead i and bead j, N is the total number of beads, and the angle brackets

denote average over all conformations. The hydrodynamic radius Rh is then determined using

the Stokes-Einstein relation

Rh =
kBT

6πηsDK
, (12)

where ηs is the solvent viscosity. In eq (11), the 3× 3 blocks Dij of the diffusivity tensor are

given by

Dij = (1− δij) Ωij + δijI, i, j = 1, . . . , N (13)

where δij is the Kronecker delta, I is the 3× 3 identity matrix, and

Ωij =


3a

4rij

[(
1 +

2a2

3r2
ij

)
I +

(
1− 2a2

r2
ij

)
rijrij
r2
ij

]
, rij ≥ 2a(

1− 9rij
32a

)
I +

(
3rij
32a

)
rijrij
r2
ij

, rij < 2a.

(14)

The averaging in eq (11) was performed on equilibrium conformations obtained from a sim-

ulation run.

Intrinsic viscosity [η] was calculated using the expression derived by Tsuda,7 which is
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based on a non-preaveraged version of Kirkwood theory. A correction factor to Tsuda’s

theory pointed out by de la Torre and coworkers8 was incorporated as well. The expression

for intrinsic viscosity used here is:7–9

[η] =
5

2

NAV1

M1

+
NA

6Mηs

〈
ζ
∑

iR
2
i

1 +
ζQ

8πηs
∑

iR
2
i

〉
, (15)

where ζ = 3πηsσ is the friction coefficient of a bead, NA is the Avogadro number, V1 = πσ3/6

is the volume of a bead, M1 is the molar mass of a bead, and

Q =
∑
l

∑′

s

[
Rl ·Rs

Rls

+
1

10R3
ls

{
4
(
R2
l +R2

s

)
Rl ·Rs −R2

lR
2
s − 7 (Rl ·Rs)

2
}]

,

where Ri is the position vector of bead i with respect to the molecule center-of-mass, Ri =

‖Ri‖, and Rij = ‖Ri −Rj‖. In eq (15), the first term in the left hand side is a correction

term introduced to account for the limiting case of a single bead,8 the expression inside the

angle brackets was derived by Tsuda7 for rigid molecules based a non-preaveraged version

of Kirkwood theory, and the angle brackets were put in by de la Torre et al9 to account for

conformational fluctuations in flexible molecules. Substituting the expressions for ζ, V1, and

M1 = M/N , we rewrite eq (15) in a more amenable form:

[η] =

(
5πNA

12

)
Nσ3

M
+
πNAσ

2M

〈 ∑
iR

2
i

1 +

(
3σ

8

)
Q∑
iR

2
i

〉
. (16)

The average denoted by the angle brackets in eq (16) was performed on the conformations

obtained from simulations.

For simulations on linear polymers using the above method, we find that the mass scaling

exponents calclated for Rh and [η] agree very well with those predicted based on Zimm

dynamics,10 as shown in Figure S6.
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Figure S6: (a) Hydrodynamic radius (Rh) and (b) rescaled intrinsic viscosity ([η]) of lin-
ear polymers determined from simulations using the method described in 2.1. The scaling
exponents shown agrees well with the predictions based on Zimm dynamics in dilute solution.
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Figure S7: Size measures showing approach to equilibrium for Nbb = 640 and Nsc = 32: (a)
Mean-squared radius of gyration (R2

g) of the whole bottlebrush, (b) Hydrodynamic radius
Rh of the whole bottlebrush, (c) Mean-squared radius of gyration of the backbone (R2

g,bb),
and (d) Mean-squared radius of gyration of the side chains (R2

g,sc). Note that the data shown
is after removal of all force-capping. Length and time are in simulation units.
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Figure S8: Mean-squared radius of gyration (R2
g) as a function of total molecular weight

M (a) and backbone molecular weight (b) for different side chain molecular weights (Msc).
Mean-squared radius of gyration of the backbone (R2

g,bb) as a function of total molecular
weight M (c) and backbone molecular weight (d) for different side chain molecular weights
(Msc). Solid lines are intended to guide the eye.
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Figure S9: Ratio of radius of gyration to hydrodynamic radius vs. molecular weight of the
entire bottlebrush (a) and backbone molecular weight (b) for different side chain molecular
weights (Msc). Solid lines are intended to guide the eye.
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