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1. The detailed derivation for Eqs. (5) and (6)

The Hankel transformation is an expression form of a function, in which the 

given function is expanded by a series of Bessel function of the first kind. For 

example, the k-th order Hankel transformation and inverse transformation for f(r) are
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Based on the above definition, the zero-order Hankel transformation of f(r) can be 

written as
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The first and second derivative of f(r) with respect to r are

                   (S4)2
100

( ) ( ) ( )df r f J r d
dr

   


 

              (S5)
2

3 1
002 0

( )( ) ( )[ ( ) ]J rd f r f J r d
dr r

   



  

Based on Eqs. (S4) and (S5),  in Eq.(1) can be expressed as2 ( )w r
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According the definition of Hankel transformation and Eq. (S6) we can get

             (S7)2 2 2
0 0 00
( ) ( ) ( ) ( )w w r J r rdr w   


    

Then the Hankel transformation of Eq. (1) can be expressed as
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The longitudinal displacement of any point in a semi-infinite elastic body under any 

axisymmetric load can be expressed as
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According to Eq. (S9), the displacement of the surface of the semi-infinite elastic 

body is
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2. Fig. S1 to Fig.S8

Finite element models were established to verify the our hypothesis about the 

contact stress distribution. The detailed information about the finite element model 

can be found in section 3 of the paper. 

Fig. S1 Contact stress at different modulus ratio of the film to the substrate when 

the indentation depth, , is 0.5 and the indenter radius, , is 1. The different 0w ft t fR t

symbols are for FEM results at different  (modulus ratio of the film to the substrate), 

and the red dotted line is for Hertz contact stress distribution.

We output the contact stress distribution within the contact radius to verify the 

rationality of our hypothesis. As shown in Fig. S1, the Hertz distribution can basically 

describe the contact stress distribution state, which shows that our assumption is 

reasonable.

To more clearly illustrate the imaginary error function in Eq.(18), its graph is 

shown in Fig. S2.



    Fig. S2 The graph of the imaginary error function.

In order to prove that the indentation response of the hard film/soft substrate 

system with high modulus ratio is not sensitive to the size of the indenter, taking the 

modulus ratio of 104 as an example, the relationship between indentation loads and 

displacements at different indenter radius is shown in Fig. S3. Fig. S3 (a) shows the 

relationship of load and relaxation time at different indenter radius when the modulus 

ratio is 104. It can be seen from Fig. S3 (a) that when the indenter radius changes from 

1 to 3, the maximum error between theory and FEM is no more than 5%. Fig. S3 (b) 

shows the relationship of load and depth at different indenter radius when the 

modulus is 104. From Fig. S3 (b), we can know that when the indenter radius changes 

from 1 to 3, the maximum error between the theory and the FEM does not exceed 

0.8%.

Fig.S3 (a) The relationship of load and relaxation time at different indenter radius 

when the modulus ratio is 104. The red dash line is for Eq.(16), and various symbols are 



for FEM results. In those example, the ratio of the decay modulus to the equilibrium 

modulus, g, takes 1, and the dimensionless indentation depth, w0 /tf, is 0.25; (b) the 

relationship of load and depth at different indenter radius when the modulus ratio is 104. 

The red solid line is for Eq.(18), and various symbols are for FEM results. In those 

example, the ratio of the decay modulus to the equilibrium modulus, g, takes 1, and the 

dimensionless indentation speed , , is equal to 0.5.𝑣0𝜏/𝑡𝑓

Fig. S4 The finite element meshes used in all simulations

Fig. S5 The loading mode used in simulations and experiments. (a) the step 

displacement load; (b) the constant rate displacement load.



Fig. S6 The graph of and changing with .)str 1 1(g - g g )  str 1 1( - 1g

 

  
Fig. S7 The samples used in the experiments and the thickness of the Cu mounted 

on MVSR. (a) Photo of the Cu/MVSR; (b) Optical image of the central region of the 

photo of the Cu/MVSR; (c) AFM image of the central region of the optical images of the 

Cu/MVSR; (d) the measurement results of the copper film thickness mounted on the 

MVSR.

The method for measuring the copper film thickness is described as follow: 

While copper is plated to the top of the MVSR using an ion sputtering apparatus, a 

half-covered silicon wafer was placed in the ion sputtering apparatus. After that the 



thickness of the copper nano film resting on the top of the silicon wafer is measured 

using AFM. We consider this measured value as the thickness of the copper nano film 

resting on the top of the MVSR.

 
Fig. S8 the measurement results of the mechanical properties of the MVSR used in 

the experiments.

3.The solution process for Eqs. (21) and (22)

(1) The solution process for Eq. (21) 

Before solving the relaxation time of the entire hard film/soft substrate system, 

the definition of relaxation time is briefly described as follows. As shown in Fig. S9, 

the relaxation time is the abscissa value of the intersection of the tangent line of the 

relaxation curve when t is zero and the line of . For example, the relationship P P

between the load and time of a semi-infinite three-parameter linear viscoelastic body 

under a step load with a spherical indenter can be described by 
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Fig. S9 the relationship between the indentation load and time under a step 

displacement load.

According to the definition of relaxation time, first of all, we should solve the 

slope of the tangent line of relaxation curve when the time equal to zero. Based on Eq. 

(20), we can get the slope of the tangent is
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Then the equation of the tangent line reads:
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At the same time, from Eq. (20) we can know the equilibrium indentation load is
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Then, taking the Eq. (S13) into the Eq. (S12), Eq. (S12) can be expressed as
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Solving Eq. (S14), we can get the relaxation time of the structure:
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 (2) The solution process for Eq. (22)

From Eq. (20), we can know the indentation load at the time equals to zero:
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Considering the structure as a material, we can know that the relationship between 

load and modulus should be linear according the traditional indentation model. So, 

based on Eq. (S16), the instantaneous modulus of the structure can be obtained:
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At the same time, from Eq. (S13), we can get the equilibrium modulus of the structure:
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Then, based on Eqs. (S17) and (S18), the ratio of the delay modulus to equilibrium 

modulus of the structure can be expressed as
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It should be emphasized that Eqs. (S15) and (S19) are only applicable to the hard 

film/soft viscoelastic substrate system with a large modulus ratio and not to the pure 

substrate. The reason for this is that Eqs. (S15) and (S19) are based on Eq. (20), and 

Eq.(20) applies only to hard film/soft viscoelastic substrate systems.


