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1. Derivation of nonlinear constitutive equations of the surface
Following Milner et al.,1 the constitutive behavior of the surface is described through a surface 
free energy density of the form
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The Cauchy stress tensor  and the bending moment tensor  in the current configuration are sσ sm
obtained from the free surface energy density by2-4
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where , we have used the identities, 2Δ oH κ κ 
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and  is the surface identity tensor in the reference configuration.%
s1

For a 2D plain strain problem, the surface stretch ratio in the out-of-plane direction is 
exactly one (no stretch), so there is only one non-trivial stretch ratio, , which is equal to . sλ sJ
Thus, we take the surface deformation gradient tensor as , where s and S are unit tangent  s sλF s S
vectors in the current and reference configurations respectively. Using  and  s1 s s

, we have the surface stress and surface bending moment acting on the curve whose T 2 s s sλF F s s
binormal direction is s as

(S4a) 0 1      s sσ B λσ σ s s
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By convention, the surface stress is along the s direction while the direction of the bending moment 
is out of plane.

2. FEM: Surface Element Implementation
We implemented a new 3-node surface element for the 2D plane strain simulations, which 

carries strain-dependent surface stresses and surface bending moments, i.e., this new surface finite 
element allows the surface stress to vary with stretch and surface bending moment to vary with 
curvature change.

In our approach, the surface elements are attached to linear C0 continuum elements. At each 
node, these continuum elements have only two degrees of freedom, displacement in x- and y-axis 
directions, without the rotation degree of freedom. To be consistent with the shape (See Fig. S1) 
and to avoid violating the integrability conditions,5 in our case we can only ask for C0 continuity 
of the surface element rather than the usual C1 continuity using Hermitian shape functions for 
elements with bending. To capture the curvature change  at each node, surface elements are 2ΔH
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applied in the following fashion: one surface element covers outer edges of two continuum 
elements, and two adjacent surface elements overlap over one continuum element. This way, we 
retain curvature change information at all points (Fig. S2). Accordingly, each surface element uses 
only one half of ,  and  as its materials properties. 0σ B bk

Fig. S1. Compatibility of the surface element and continuum element. (A) If the surface and 
continuum elements are both of C0 continuity, they are compatible with each other; (B) if the 
surface and continuum elements are of C1 and C0 continuity respectively, incompatibility would 
occur between the two. 

Can't find curvature change here(A) (B)

Fig. S2. Choice of pattern to apply the surface elements. Black blocks and red lines represent 
continuum and surface elements, respectively (A) Overlapping surface elements can represent 
surface stretches and surface curvature; (B) A single layer of surface elements is unable to 
represent curvature everywhere.

To find the change of curvature , we utilize the ideas of isoparametric finite elements. For 2ΔH
any arbitrary 3-node surface element with nodal points ,  and  which  1 1,x y  2 2,x y  3 3,x y
correspond to the coordinates -1, 1 and 0 in the master element (Fig. S3), we can interpolate any 
point  on the surface by  ,x y
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where the ’s are standard shape functions: ,  and .iN  1
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

master element 

(𝑥1, 𝑦1)

(𝑥3,𝑦3)

(𝑥2,𝑦2)

Fig. S3. Mapping from the master element to the surface element.

For a plane curve, the curvature can be calculated as 
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where primes refer to derivatives with respect to .Then we compute the curvature at  ξ 0ξ
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and take this value as the curvature of this surface element. Therefore, we can compute  by 2ΔH
subtracting  in the current and reference configurations, respectively.

0
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The value of , by its physical meaning, can be obtained from the ratio of the length before and sJ
after deformation. The length of the surface element is 
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Hence, we compute  by taking the ratio of the surface element length in the current and sJ
reference configurations.

The potential energy of a deformed element is
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where L is the length of the surface element in the reference configuration.
The nodal forces are given by
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where  is the ith component of the displacement vector  in the current ia  T1 1 2 2 3 3, , , , ,x y x y x y
configuration. 
The stiffness matrix of this element is given by
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3. Thickness of Oxidized Layer by Diffusion Model
We assume that the growth of the oxidized layer is controlled by the diffusion of gaseous 

reactive species into PDMS, and the reaction front corresponds to the position where concentration 
exceeds some critical values, . Since the layer thickness is much smaller than typical pattern cc
dimensions, the region near the edge can be represented as an infinite wedge with internal angle 

. The geometry is shown in Fig. S4.  0 00 2   

O
𝜃

r

𝜃 = 0

𝜃 = 𝜃0

Fig. S4. Geometry of an infinite wedge in polar coordinates. The shaded region represents the 
wedge with the Dirchlet boundary conditions.

The tip of the wedge coincides with the origin of a polar coordinate system . We assume that  ,r 
the reaction starts at time . Since the surface is exposed to a constant concentration of ozone, 0t 
the boundary conditions are

 (S12a)  0, 0, 0c r t c  

 (S12b) 0 0, , 0c r t c   
Since deposition starts at , the initial condition is0t 

(S13) 0, 0 , 0 0c r t    
In polar coordinates, the diffusion equation is 

(S14)
2

2 2

1 1
t

c cc D r
r r r r
            

where D is the diffusion coefficient. The exact solution of (S14) subjected to the initial and 
boundary conditions (S13) and (S12a,b) was given by Jaeger.6 The solution is:
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where  is the Bessel function of the first kind with order . Equation (S15) 
k

J   02 1 /k k   
allows us to determine the layer thickness as a function of time and position. Since Jaeger stated 
the result without derivation, we will provide the detailed derivation elsewhere.

4. Representing the Oxidized Layer by Surface Properties
Fig. S5 schematically shows putative distributions of residual stress  and elastic modulus  y

 along some cross sections of the oxidized layer after UVO treatment. Untreated PDMS has  E y

zero residual stress  and elastic modulus , and we assume .  The partially  E   =E E y
oxidized PDMS has graded properties with a characteristic depth that grows due to diffusion.  We 
replace the graded region with a layer of thickness h(s) and uniform properties.  We also assume 
that the neutral axis lies in the middle plane of the oxidized layer. Replacing the oxidized layer by 
a beam of thickness h, the parameters ,  and  of the surface can be related to the residual 0σ B bk
stress, axial stiffness and bending stiffness of the oxidized layer as

0

ℎ(𝑠)/2

‒ ℎ(𝑠)/2

y

𝜏(𝑦)
𝐸(𝑦)

Oxidized 
layer

Fig. S5. Distributions of residual stress (blue curved line) and elastic modulus (red curved 
line) along one cross-section of the oxidized layer. The black lines bound the oxidized layer.
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where  and  are bulk residual stress and bulk elastic modulus of the oxidized layer, and these o oE
are assumed to be independent of position.

Assume that the growth of oxidized layer on the upper edge follows the diffusion equation 
for an infinite wedge, and the characteristic normalized concentration of  identifies the 0.98cc 

boundary (reaction front) between the oxidized layer and PDMS. Thus, if the thickness  at  0h
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point O is known, we can solve for  by (S15).  Furthermore, we determine the entire region of Dt
the oxidized layer once we obtain . To get , as shown in Fig. S6 through a point P on the Dt  h s
inner boundary we draw a line along the normal direction which intersects the upper edge at point 
Q. Computing the length of PQ we get  at point Q; in the same fashion we determine   h s  h s
on the entire upper edge. For the vertical edge, assume that the thickness reduces linearly from 

 at the upper corner to  at the bottom corner; for the lower edge, assume the thickness  h L  0h

is equal to  uniformly. 0h

Therefore, if any two of  are known, by (S16b, c) we get all these       , 0 , 0 , 0o gE h B k

four terms; once we have , by the above argument we can determine the thickness distribution  0h

 for the entire surface. Meanwhile if we know  too, we can have all the surface  h s  0 0σ
properties by

 (S17a, b, c)
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Fig. S6. Schematic drawing of oxidized layer: Strategy to represent the oxidized layer by surface 
properties. Through a typical point P on the reaction front where the characteristic concentration 
is 0.98 (red dashed line), we draw a line in the outward normal direction which intersects the 
surface (blue line) at point Q.  The distance PQ then determines the thickness assigned to point Q. 
The region shaded gray represents the oxidized layer, while the blank region below the red dashed 
represents the unreacted PDMS.  The thickness of the oxidized layer is used to compute (spatially 
varying) surface stress, surface extensional elasticity, and surface bending elasticity.
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5. Parameter Estimation for UV Ozone Treated PDMS
To get a reasonable starting point for the fitting procedure of UV Ozone treated PDMS samples, 
we first extract an approximate surface stress value for each data point. We use the same fitting 
procedure as described in Section 2.5 of the main text to obtain an initial approximate value for 
the surface stress for a given applied stretch.   Specifically, we use Fig. 3B to determine the 
elastocaplliary number  for a given applied in-plane stretch and measured normalized 0 / Ew
amplitude. Since the Young’s modulus of the PDMS and wavelength are known independently by 
direct measurements, we can so calculate the surface stress value for each data point.  Next, we 
use a least-squares fitting to find the relationship between the surface stress so estimated and the 
applied stretch. As an example, the results in Fig. S7 give us estimates of  and  0 0 2.0 N/mσ 

. 0 20 N/mB 

The small offset between stretch/loading and release/unloading seen in Figure S7 is also 
observed in Figures 5B,C but not in Figure 4.  This effect is small in that stress-stretch is nearly 
reversible.  Also, results were reproducible over several cycles, and from these two observations 
we conclude that the surface behaves elastically in the main.  However, the results do indicate 
some surface inelasticity, which would be interesting to examine in a follow-up study.

 
Fig. S7. Estimation of surface stress and extensional elasticity. The blue squares and red circles 
represent the extracted surface stresses during the stretch and release process respectively, and the 
solid line represents the least-square fit.

6. Thickness Adjustment for FEA
Adjusting the thickness of the oxidized layer preferentially affects the profiles at the corners 

while only marginally affecting the deformation elsewhere. In Fig. S8, we fit the height reduction 
versus stretch with various thicknesses. It shows that if we maintain the product of the oxidized 
layer’s thickness and its bulk elastic modulus, we would still get as good a fit to the height 
reduction versus stretch (Fig. S8A), but might not get the characteristic sharp edge shape at the 
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corners (Fig. S8B). In particular, the results indicate that when the thickness is less than ~100 nm, 
FEM can not capture the corner feature; on the other hand, when the thickness is bigger than ~300 
nm, we reproduce the feature by our FE model, and further increasing the thickness doesn’t change 
the profiles much. Since experimentally, it is known that the oxidized region has thickness of about 
a few hundred nm, we choose , at the lower end of the range that works for fitting  0 0.3 μmh 
the 50-micron PDMS sample. 

Fig. S8. Results of varying the oxidized layer thickness and bulk modulus for a stretching 
experiment for patterned PDMS samples exposed to UVO for 60 minutes with amplitude a 
= 1.35 µm and wavelength w = 50 µm. (A) Normalized height versus in-plane stretch for 50-
micron PDMS sample. The yellow, purple and green lines represent the thickness  of 0.5, 0.3  0h

and 0.1 microns respectively. (B) Line scans for the thickness  of 0.5, 0.3 and 0.1 microns  0h
cases respectively.

7. Line Scan Fitting for 40-Micron and 30-Micron Samples
The linescan fits for 40-micron and 30-micron samples are shown in Fig. S9 with the fitting 

parameters provided in Table 1 of the main text.  Notice that in Fig. S9 an overshoot of the line 
scans occurs locally near the edges of each ridge.  For nearly flat regions, this method provides 
accurate height measurements ( ).  However, interferometric measurements fail when the 3nm
surface has significant slope (typically > 25 degrees).  For any typical ridge, the data are therefore 
reliable as one approaches either the left or right edges from the middle of the ridge.  However, 
data on the left side of the left edge or right side of the right edge are not reliable.  Therefore, we 
can reliably conclude that the edges of each ridge have ear-like “overshoots” but it is difficult to 
trust their magnitude from these experimental measurements.  We should point out that this effect 
is local.  Away from these sharp edges, the line scans are quite accurate and match the FE result 
very well.
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Fig. S9. Line scans for a = 1.35 µm and w = 40 µm  and 30 µm UVO PDMS are shown before 
UVO exposure and after UVO exposure (unstretched and maximum stretched states). FEM 
fits are also shown. (A) 40 μm (B) 30 μm

8. Effect of Soft Layer on Stiff PDMS on Amplitude Reduction
For one of the untreated PDMS negative control samples, we observed consistent 

disagreement, between our FEM predictions and experimental results for the normalized amplitude 
versus stretch (Fig. S10).  Overall, this is an exception to the majority of cases analyzed where 
FEM results matched amplitude reduction with stretch.  However, we could bring the simulation 
and experiment into better agreement if we assumed the top 5 microns layer to be softer than the 
bulk, say by reducing its Young’s Modulus 

Fig. S10. Normalized amplitude versus stretch for an untreated PDMS samples with a = 1.35 
µm and w = 30 µm.  In this case the deformation is small but we found a consistent disagreement 
between the finite element prediction and experiment.  Experiments for the w=50 µm sample 
shown in Fig. 2B of the main manuscript are in significantly better agreement with FEM results 
although the small discrepancy in that case is also that FEM calculations predict a slightly greater 
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reduction in amplitude than measured.  FEM simulation results for the gel samples and UVO-
PDMS samples were all able to match experiment very well.  It is known that near-surface moduli 
can be lower than that of the bulk. Interestingly, our calculations show that reducing the near 
surface modulus does in fact improve the comparison between FEM and experimental results.  
While the discrepancy for this sample shown in Fig. S10 is not fully resolved, in the context of the 
majority of the experimental data and its FEM analysis we believe this case to be an exception that 
does not affect our overall conclusions. 
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