Electronic Supplementary Information (ESI) for

Study on the mechanism of organic acid structure on the rheological behavior and aggregate transformation of pH-responsive wormlike micelles system

Wanli Kang,^{a,b} Xiaoyu Hou,^{a,b} Pengxiang Wang,^{a,b,c} Yilu Zhao,^{a,b} Tongyu Zhu,^{a,b} Chao Chen^{a,b} and Hongbin Yang,^{*,a,b}

^{a.} Key laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, P. R. China.

^{b.} School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, P.R. China.

^{c.} School of Mining & Petroleum Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada.

*Corresponding Author: whb0810@126.com .

Additional Results

Fig.S1 The curve of zero-shear viscosity (η_0) at different pH values for 30 mM EAMA and 30 mM *o*-EAPA solutions at 25 °C

Fig.S2 Steady rheological curves of 30 mM EATA solution at different pH values and 25 $^\circ C$

Fig.S3 Species distribution resulting from an aqueous solution of TA, CA and UC_{22}AMPM at 25 $^\circ\text{C}$

Fig.S4 Proton resonances for 30 mM UC₂₂AMPM/10 mM TA system at different pH values

Fig.S5 Variation in surface tension with concentration of EATA at 25 °C (A: pH=2.20, B: pH=3.00, C: pH=3.80, D: pH=4.80)

The minimum average area per surfactant molecule was calculated by Gibbs adsorption equation:

$$\Gamma_{\max} = -\frac{1}{nRT} \left(\frac{\partial \gamma}{\partial \ln c}\right)_T \tag{1}$$

$$A_{\min} = \frac{1}{\Gamma_{\max} N_A} \tag{2}$$

Where, $(\partial \gamma / \partial \ln c)$ is the slope of the surface tension curve, R = 8.31 J / (mol·K), T = 298.15 K, $N_A = 6.02 \times 10^{23}$, *n* is a constant which depends on the number of species constituting the surfactant and which are adsorbed at the interface.⁴⁹ The value of *n* can be determined by comparing the value of Γ , which respectively obtained from neutron reflectivity and Gibbs adsorption equation.⁵⁰⁻⁵² And *n* takes the value 2 for an ionic surfactant where the surfactant ion and the counterion are univalent, while *n* takes 3 for Gemini surfactants.^{49, 51, 53} And the agreement between the two measurements is now seen to be excellent using

the normal prefactor *n* of 2 and 3 in the Gibbs equation.⁵⁴ According to the species distribution of TA, TA gradually transform into TA⁻ and TA²⁻ as increasing the pH, which means that the oligomeric surfactant in EATA solution will switch from one protonated UC₂₂AMPM and TA⁻ to Gemini surfactant made up by two protonated UC₂₂AMPM and TA²⁻. Therefore, *n* takes 2 at pH 2.20 and 3.00, while takes 3 at pH 3.80 and 4.80 in this research.

The length l_c (cm) and volume v (cm³) of hydrophobic chain of surfactants was obtained by characteristic parameters of surfactants:

$$l_c = (1.50 + 1.265n_c) \times 10^{-8}$$
(3)

$$v = (27.4 + 26.9n_c) \times 10^{-24} \tag{4}$$

Where n_c is the number of carbon atoms in hydrophobic chain of surfactants and takes 21 according to the structure of UC₂₂AMPM.

According to the A_{\min} , l_c and v, the packing parameter p can be calculated by $p=v/al_c$. And the calculated results were listed in the Table.S1.

pH	$l_c(nm)$	V(nm ³)	A_{\min} (nm ²)	р
2.20	2.8065	0.5923	0.708	0.298
3.00			0.651	0.324
3.80			0.563	0.375
4.80			0.450	0.469

Table.S1 The Surface parameters of EATA system at different pH values and 25 °C

The *p* of EACA system was calculated by using the same method, and the data of A_{\min} was provided by Wang (Wang *et al.* "A pH-responsive wormlike micellar system of a noncovalent interaction-based surfactant with a tunable molecular structure", *Soft Matter*, 2017, 13, 1182-1189). The calculated results were listed in the Table.S2.

Table.S2 The Surface parameters of EACA system at different pH values and 25 °C

pH	$l_c(nm)$	$V(nm^3)$	A_{\min} (nm ²)	р
2.20			0.611	0.345
3.00	-		0.580	0.364
4.00	2.8065	0.5923	0.560	0.377
5.00			0.481	0.439
6.17			0.449	0.470