Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2019

Supporting Information

A Mixed Ligand Approach towards Lanthanide Based Gels Using Citric Acid as Assembler

Ligand: White Light Emission and Environmental Sensing

Alphy Sebastian, Malay Krishna Mahato, and Edamana Prasad*

Department of Chemistry,

Indian Institute of Technology Madras,

Chennai-600036, Tamil Nadu

India

Corresponding author email: pre@iitm.ac.in

Table of contents

1.	Synthesis and characterizations of 4'-(4-bromophenyl)-2,2':6',2"-terpyridine	S3
2.	Table containing details of gelation test	S6
3.	SEM images of CA Eu and CA Tpy Eu xerogels	S7
4.	IR spectra of Tpy and xerogels of CA Eu and CA Tpy Eu	S8
5.	Elastic stress versus strain graph	S9
6.	Strain sweep and Frequency sweep studies of CA Eu and CA Tpy Eu gels	S10
7.	MALDI spectrum for the CA Eu xerogel	S11
8.	Comparison of ¹³ C NMR spectra	S12
9.	Solution state absorption spectra of Tpy with incremental addition of lanthanide ions	S13
10.	Photoluminescence spectra of mixed ligand–lanthanide gels with increasing	S13
	concentrations of Ln (III) ions	
11.	Theoretical calculation of energy levels	S14
12.	Luminescent color shift of CA Tpy Tb in response to pH verified by CIE	S15
	Chromaticity diagram	
13.	Vapor response of thin film prepared from CA Tpy Tb gel.	S16
14.	Quantum yield of xerogels	S17
15.	References	S17

1. Synthesis and characterizations of 4'-(4-bromophenyl)-2,2':6',2''-terpyridine

2-Acetyl pyridine (3 equivalents) was added to 120 mL methanol solution of 4bromobenzaldehyde (1.0 g, 5.40 mmol), NaOH (0.22 g, 5.4 mmol) and 30 mL concentrated NH₄OH. The reaction mixture was refluxed for 2 days, and then let to reach room temperature. The formed slight yellow precipitate was filtered and washed sequentially with H₂O and cold CH₃OH. Recrystallization from ethanol yield 4'-(4-bromophenyl)-2,2':6',2"-terpyridine as white solid (1.8 g, 88% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.72 (d, 2H), 8.66 (s, 2H), 8.64 (d, 2H), 7.86 (m, 2H), 7.76 (d, 2H), 7.63 (d, 2H), 7.34 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 156.0, 149.1, 149.0, 137.4, 136.9, 132.1, 128.9, 123.9, 123.4, 121.3, 118.5

Scheme S1: Synthesis of compound 4'-(4-bromophenyl)-2,2':6',2"-terpyridine

¹H NMR

Figure S1: ¹H NMR spectrum of 4'-(4-bromophenyl)-2,2':6',2"-terpyridine

Figure S2: ¹³C NMR spectrum of 4'-(4-bromophenyl)-2,2':6',2"-terpyridine

HRMS

Figure S3: HRMS of 4'-(4-bromophenyl)-2,2':6',2"-terpyridine

2. Table S1 Containing details of gelation test

Gelation ability results of the bicomponent (citric acid anhydrous + Ln (III) acetate) system tested in various solvents, with known Kamlet-Taft parameters.

Entry	Solvent	Phase	Kamlet-Taft solvent parameters		
			α	β	π*
1	H ₂ O	S	1.17	0.47	1.09
2	DMSO	G	0.00	0.76	1.00
3	DMF	G	0.00	0.69	0.88
4	DMAc	G	0.00	0.76	0.88
5	NMP	G	0.00	0.77	0.92
6	CH ₃ CN	PS	0.19	0.40	0.79
7	THF	PG	0.00	0.55	0.58
8	MeOH	PG	0.98	0.66	0.60
9	EtOH	PG	0.86	0.75	0.54
10	EtOAc	Ι	0.00	0.45	0.55
11	CH ₂ Cl ₂	Ι	0.13	0.10	0.82
12	Hexane	Ι	0.00	0.00	-0.04
13	Toluene	Ι	0.19	0.40	0.75
14	Benzene	Ι	0.00	0.10	0.59

S=Soluble, G=Gel, PS=Partially soluble, PG=Partial gel, I=Insoluble

3. SEM images of CA Eu and CA Tpy Eu xergels

Figure S3: SEM images of a) CA Eu and b) CA Tpy Eu xerogels.

4. IR spectra of Tpy, CA Eu xerogel and CA Tpy Eu xerogel

Figure S4: a) IR spectrum of Tpy.b) IR spectra of CA Eu (black line) and CA Tpy Eu (red line) xerogels.c) Zoomed IR spectra of Tpy (black line) and CA TpyEu (red line).

5. Elastic stress versus strain graph

Figure S5: Elastic stress versus strain graph for a) CA Tb and CA Tpy Tb and b) CA Eu and CA Tpy Eu.

6. Strain sweep and Frequency sweep studies of CA Eu and CA Tpy Eu gels

Figure S6: Strain sweep meassurements of a) CA Eu and b) CA Tpy Eu gels. c) tan delta vs. frequency sweep data of CA Eu and CA Tpy Eu gels.

7. MALDI spectrum for the CA Eu xerogel

Figure S7: MALDI spectrum of CA Eu (1:1) xerogel in 30% methanolic water solution.

The highest m/z value of 1278 account for the formation of coordination oligomer with at least three Eu (III) centers. Higher oligomers are not observed in the MALDI spectrum because of the poor solubility of the higher oligomers (The xerogel was very poorly soluble in methanolic solution which is in agreement with the literature reports of lanthanide citrate coordination polymers).¹

8. Comparison of ¹³NMR spectra

Figure S8: ¹³C NMR spectra of citric acid and CA Zn xerogel recorded in D₂0.

To further confirm the metal-citric acid binding, a similar gel was prepared by mixing citric acid and zinc acetate (1:1 ratio) in DMF and the ¹³C NMR spectrum of the resultant xerogel is compared with that of uncoordinated citric acid. A significant shift in the peaks corresponding to carboxyl carbons and carbon attached to –OH groups confirms the metal-ligand coordination.

Figure S9: Solution state absorption spectra of Tpy (10^{-5} M) with increasing amounts(0-2 equivalents) of a) Tb (III) ions and b) Eu (III) ions.

10. Luminescence spectra of mixed ligand-lanthanide gels with increasing concentrations of Ln (III) ions

Figure S10: Luminescence spectra of a) CA Tpy Tb with increasing concentrations of Tb (III) ions (0.8-1.4 equivalents) and b) CA Tpy Eu with increasing concentrations of Eu (III) ions (0.8-1.4 equivalents).

11. Theoretical calculation of energy levels

Figure S11: Optimized a) ground, b) singlet, and c) triplet state structure of Tpy obtained by

density functional theory calculation with B3LYP/6-31+G(d) theory.

12. Luminescent colour shift of thin film prepared from CA Tpy Tb gel in response to pH verified by CIE chromaticity diagram

Figure S12: CIE (1931) coordinates diagram for thin film prepared from CA Tpy Tb gel at different pH.

13. Vapor response of thin film prepared from CA Tpy Tb gel.

Figure S13: UV illuminated photographs of CA Tpy Tb gel thin film in different vapors.

16. Quantum yield of xerogels

SI	Gel	Absolute Quantum
No		Yield (%)
1	CA Tpy Tb	4.27
2	CA Tpy Eu	3.87
3	White light	3.33
	emitting gel	

 Table S2: Results of absolute quantum yield meassurement of xerogels.

Reference

S. G. Liu, W. Liu, J. L. Zuo, Y. Z. Li and X. Z. You, *Inorg. Chem. Commun.*, 2005, 8, 328–330.