Electronic Supplementary Information (ESI):

Collective oscillation in dense suspension of self-propelled

chiral rods

Yan Liu,^a Yuguang Yang,^b Bo Li*^a and Xi-Qiao Feng ^a

 ^a Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
^b Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218

Supplementary Figure

Fig. S1. Local number density as a function of time for various chiral rods with arm-length ratio $\alpha = 3$ and (a) $\beta = 90^{\circ}$, (b) $\beta = 120^{\circ}$, (c) $\beta = 150^{\circ}$. The period of collective oscillation (black solid line) and isolated motion (red dotted line) are compared. Deviation are 1.3%, 4.2% and 9.7%, respectively. When β increases, the maximum magnitude of the local density increases, because alignment induced by

^{*} Corresponding author.

E-mail address: libome@tsinghua.edu.cn (B. Li).

elongated shape promotes more dense packing.

Supplementary Movies

Supplementary Movie 1: Simulation animation of the dynamics of chiral rods ($\beta = 90^{\circ}$). The animation of 4000 active chiral L-shaped rods under the self-propulsion and repulsive interaction. The aspect ratio is $\alpha = 6/3$. Other simulation parameters: active force magnitude $F_a = 15kT/d$ and Yukawa amplitude $U_0 = 25kT$. The movie shows the formation of collective oscillation from initial random distribution.

Supplementary Movie 2: Simulation animation of the dynamics of achiral rods ($\beta = 180^{\circ}$). The animation of 4000 active achiral straight rods under the self-propulsion and repulsive interaction. The system parameters are the same as Movie S1. The movie shows the formation of stable giant clusters from initial random distribution.

Supplementary Movie 3: Contour of number density field in the chiral system ($\beta = 90^{\circ}$). The movie of contour of rod number density field in the chiral system corresponding to the case in Movie S1. There are 4000 L-shaped rods and the area fraction $\phi = 20\%$. The system at the beginning of the movie has reached the steady state. The color bar reflects the degree of intensity.

Supplementary Movie 4: Contour of number density field in the achiral

system ($\beta = 180^{\circ}$). The movie of contour of rod number density field in the achiral system corresponding to the case in Movie S2. There are 4000 straight rods and the area fraction $\phi = 20\%$. The system at the beginning of the movie has reached the steady state. The color bar reflects the degree of intensity.