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In this supplementary material, the beam model of regimes 2 and
3 is presented in detail, as well as a strategy for solving the cor-
responding equations numerically. Finally, both the alternative
hypothesis of a constant moment M; and the adhesion of a dry
contact are discussed in the two last sections.

1 Main model

The beam deflection is modelled as described in the schematics of
Fig. 1. Points D, W and C represent positions of the right end of
the beam/substrate apparent contact zone, the beam/liquid/air
contact line and the clamp. In regime 2, D coincides with the
beam tip while in regime 3, both are separated by a distance d.
The s-axis is tangent to the beam in D, which corresponds to its
origin s = 0. In regime 2, it makes an angle o,; with the substrate.
The beam deflection y(s) is measured perpendicularly to this s-
axis. The local beam slope is ¢(s) = arctan(dy/ds). By definition,
¥(0) = ¢(0) = 0. The clamp is at position (s.,y.) and the beam
slope satisfies @(s;) = o — ay.
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The forces that apply on the beam were described in the main @
text. They are recalled in the schematics of figure 1. The reac-
tion force in D can be projected in the (s,y) coordinates: Ny =
Nycosay — Tysinoy along y and Ty = Ny sin oy + Ty cos oy along s.
Therefore,

tanoy + U

To=Ny—m.
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As the beam is a slender body, it always prefers bending instead
of stretching, so its deflection y(s) satisfies the Euler-Bernoulli’s
equation, Bk(s) = M(s) where x(s) is the local beam curvature
and M(s) the moment at abscissa s. In the wet part between D
and W,

(b)

Fig. 1 Two-dimensional schematics of the beam (green), the clamp (or-
s oW ange), the substrate (apricot) and the capillary bridge (blue). (a) Regime
M(s) = Mg+ Nos — Toy —/ R [(s—s")ds' +(y—y)dy] (@) 2, represented with an inclination oy, and (b) regime 3. Forces and mo-
0 ments applied to the beam are represented in red. The main variables of

the model are indicated.
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while in the dry part between W and C,

Sw oW

M(s) = Myg+Nos—Toy— /0 'l [(v —s)ds' + (y —y/)dy/]

—  oW(s—sy)sin(6, + @y)

+ oW(y—yw)cos(6,+ @) 3)

where s, y,, and ¢, are the position, deflection and inclination
at point W.

We consider small beam deflections, i.e. y*> < s? and tan¢ =
dy/ds < 1, so the bending curvature can be approximated by
d?y/ds* and the Euler-Bernoulli equation simplifies into:
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for the dry part.

Besides boundary conditions, the beam is subjected to three
geometrical constraints. Firstly, as it cannot stretch, its length L
should satisfy
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Secondly, the circular liquid-air interface of the capillary bridge
should connect to both the substrate and the beam with contact
angles 6, and 0y, respectively. This is satisfied if

Zw = Sy Sin 0y +yy cos 0y = R[cos Oy +cos(6, + oy + @) (7)

And thirdly, the volume of liquid per unit width V /W = QL?, given
by
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should remain constant, where x = scos @y — ysin oy and
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The reaction forces and moment at the clamp are given by

N, Ny «x 1.
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?C - Hi (10)

1.1 Wet part
1.1.1 Regime 2:

In this regime, M; = 0 and, in the limit of low friction where
Ty < B/s2, the wet part obeys

%y Ny 52

a2~ B T 2°R
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The solution to this equation that satisfies y =dy/ds=0in s =0 s

2 3
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Since dy/ds = tan ¢, in s = s,,, equations 12 and 13 can be rewrit-
ten in s,, as:
Nosy  tan@,,

- - 1
602R 2B Sy a4
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Combining them with the geometrical condition on the liquid-
air interface (eq. 7) yields:

Nosy 2+2 tan @, +6tan a;\ Nosy
2B Sy Sy 2B
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This quadratic equation can be solved for Nys,,/(2B). The discrim-
inant p satisfies

cos 05 + cos(6, + 0ty + @)
2 cos oy

4
p>= — (tan @y +3tanoy)* 42
s

w

(16)

Only the solution Ny > 0 is kept since the beam touches the sub-
strate in regime 2, namely

Nosy tan @, + 6tan oy

= _ 17
2B p Sy a7
Then,
S%V o 2tan (Pw+6tan (0 7] (18)
602R Sw
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and )
s 2tan ¢, — 6tanq,
Yw= s [P + M] (19)
12 Sy
The liquid volume is evaluated by considering that
S 3 —12
/ s = sl(zp_~_t‘":\n(pw tanocd)
Jo 60 Sy
Sw dy 5 3tan ¢, —6tan oy
—sds = = - 20
o a5 20 (p + 5w (20)
The wet beam length is
2.5
L,— SZV Nosa, Njsy, 21)

S SoaRE T 72BCR T 40
1.1.2 Regime 3:

In this regime, o; = 0 which implies Ny = Ny, and Ty = 0. The wet
part obeys
&y Y

1
R e

The solution to this equation that satisfies y=dy/ds=0ins=01is

dy Ny /5 $34+3d%(1 —2m)s
= = L5432 - 2
ds a5 (7 + 2mas) 607R (23)
_ Nj/; N st H6d%(1—2m)s?
Y = &g <s + 3mds ) 4R (24)
For the sake of simplifying notations, we define
_ 2
gomd o, (=2md ©25)
Sw 52,

Since dy/ds = tan ¢,, in s = s,, equations 23 and 24 can be rewrit-
ten in s,, as:

2
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Combining them with the geometrical condition on the liquid-air
interface (eq. 7) yields:
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This quadratic equation can be solved for Nys,/(2B). The dis-
criminant is then

2
P> = 4143001 +3b)2tansz"’w 29)
w
cos 65+ cos(6y, + @)
+ 2(143b)*(1+2a)(1 + 6a — 6b) —— 7 !
and only the solution N; > 0 is kept.
The liquid volume is evaluated by considering
Sw Nyst 5y,
ds = Y (1 +4aq) - —~2 14+10b 30
/oys 245 1144~ 5pg (11100) (30)
The wet beam length is
s Ndsg,
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where we recall that
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— g - —b 32
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1.2 Dry part

We define

Ty cos(6,+ @)
K=-0 2T
B £2

If K > 0, then k = v/K and Euler-Bernoulli’s differential equation
becomes

(33)

dy |
2 4Ky =Gs+H (34)
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where
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The solution that satisfies boundary conditions at the contact line
is:

t c C .
y(s) —yw — pange = fl (1 —cost)+ é (¢t —sinr)

Cik C
tan@(s) —tang@, = = sinr + 2 (1 —cost) (36)
K K
where r = k(s —s,,) and
Md NO T() S%V
C, = —+— Dy - W
! B "B T B 2R
N() T() Sw sin Gb
C = ———t — 37
2 B B P RRT eos O (87)
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The dry length L; between points W and C is given by

1 t. CC
Ly = (1 + Etan (pw) 4 211{22 (1—cost.)?
Ct c3
+ SKE —— (2t —sin2t.) + 8K2k (61, — 8sint. +sin2z.)
Cit ) Cht
%m(lfcostc%r%z%v(&fsintc) (38)

with 7. = k(sc — sw). The clamp position s, is determined through
the non-stretching condition L = d+L,,+ L. Finally, the clamping
condition ¢(s;) = o — a, needs to be imposed.

If K <0, then k= v/—K and
d2
= ) y=Gs+H (39)

The solution that satisfies boundary conditions at the contact line
is:
¥(s) = yw—

t G G .
ztan(pw = ?(1 coshz)+K—k(1 sinh?)

1k
tan@(s) —tan@, = —%51 ht—o—%(l—cosht) (40)

where again ¢ = k(s — sy).
The dry length is then given by

1 t C\C
Ly = (1 + Etan (pw) ° 4 211(22 (coshz, —1)?
2 C2
+ 8K - ——(2t, —sinh 2.) + 8K2 . (6, — 8sinhf, + sinh 2z.)
Citan @y, Cytan @,

(1 —cosht.) + (tc — sinht,) 41)
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1.3 Solving the system of equations

In the previous section, the model of beam deflection has been
progressively reduced from a system of differential equations with
boundary conditions to a system of non-linear algebraic equa-
tions. This latter has been solved iteratively in Matlab according
to the following procedure:

1. For a given value of ¢,, (here chosen within [—5°,12°]),

(a) Consider a range of values for s,, (here chosen between
10~4L and L),

(b) Calculate p(sy), No(sw), R(sw), Yw(sw) and V(s,) ac-
cording to section 1.1. In regime 3, both solutions +p
should be considered, and only the one yielding V > 0
and y,, > 0 is kept.

(c) Find s, that yields the desired liquid volume V [the
function V (s,,) is monotonic].

(d) Find the clamp position s, that yields the desired beam
length L = d + L,, + L, [the function L(s.) is mono-
tonic]. Deduce y. and @,.

2. Loop on ¢, (i.e.,
dition ¢, = o —

repeat step 1.) until the boundary con-
oy at the clamp is satisfied. A bisection
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method was adopted, as there may be several solutions and
no guarantee of convergence. Only the less deformed solu-
tion (i.e. the solution of smallest |¢,,|) was kept.

3. Calculate the reaction forces at the clamp N,, T, and M,.

This process involves one main loop (¢,) and two independent
secondary loops (s,, and s.). It is therefore much simpler and less
time consuming to solve than the initial model based on the Euler-
Bernoulli differential equation with several boundary conditions
and geometrical constraints.

2 Alternative hypothesis of constant }/;

The model of regime 3 is based on the hypothesis of a distributed
reaction force through the parameter m. In the previous models
of elastocapillary adhesion, the reaction force was assumed to be
localized in D and constant (possibly equal to zero). Following a
similar approach to section 1.1 with this new hypothesis on M,
we find

2
M t 0 0 ,
p? = R an @y | pC08 X—H:O;( b + Q)
B Sy J4
Nosw 2M,; tan@,,
2B B Sy
2
Sy M, tan @y,
= S Juuh 14 42
6R(2 P=3 5w (42)
and a deflection
Md 2, Mo . st
— 3
Y=28" T68" ~ 2ar2 (43)

in the wet zone.

3 Dry adhesion in regime 3

In the absence of a liquid bridge, the aforementioned equations
are greatly simplified. If we further assume that there is still no
friction, the Euler-Bernoulli equation becomes

dZ

The beam deflection is then
C

3 2
0= (etas (£) - () @

where s, = L—d. It satisfies y(0) =y'(0)
a.. The curvature is

Y= (—12%‘ +6%) —+(6y—;—2—) (46)
Sz Se ) Se §Z Se

from which we infer

=0, y(s¢) =y, and yl(sc) =

Ny=— B ( 2y‘ +6—) ande:B(6y—°—2—). 47)
Se 52 52

Se ¢ Sc

As the beam shall not penetrate the underlying substrate,
y"(0) > 0, which yields

se < =£. (48)
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We may here attempt to determine s, (and so d) through energy
arguments. The internal bending energy of the beam is

Sc B 2B [ y? Ve O
U= | (") %dx="2 132 —322 4 o2 4
| 50mar= 5 e (49)
The external work of the loads is
W = — .M.+ yN,. (50)

If the beam is free to slide along the substrate, there is no external
force in the s direction so W is independent of s.. We may consider
an additional adhesive energy E, = —& (L — s¢).

The total potential energy is therefore

My, 0c,5:) =

2B [,)?

YcOe

Se | s& Se

It should be minimum regarding the three possible displacements
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U+W+E, (51)

+ 02| — M, +ycNe — E(L—s¢).

Ve, O and s;:

oIl N,
—} —0 = to-n¥ieX (52)
Iye OeSe B Se S¢
oIl M,

} —0 = oo —eXqa% (53)
20, Yorse B 52 Se
oIl § o
- =0 == — 3y, =0. 5
asc}y(,ap = ZBS‘ + Otese — 3y (54)

This latter equation can only be satisfied in the adhesive regime
(& > 0). If the solid-solid interaction is not energetically
favourable (£ < 0), then % < 0 and the minimum is found when
sc = 1, i.e. when the contact area between the beam and the sub-
strate is reduced to 0.

For £ > 0, an equilibrium in 5. < 1 satisfying equation (54) is
necessarily stable since

Y1 6B

c Cc

The solution s, to Eq. (54) is in the range ]0,L[ when

ol I* |E&
==, 56
3 "3\V28 (56)

Ye <

We note that M; = \/2&B is constant.
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