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In this supplementary material, the beam model of regimes 2 and
3 is presented in detail, as well as a strategy for solving the cor-
responding equations numerically. Finally, both the alternative
hypothesis of a constant moment Md and the adhesion of a dry
contact are discussed in the two last sections.

1 Main model
The beam deflection is modelled as described in the schematics of
Fig. 1. Points D, W and C represent positions of the right end of
the beam/substrate apparent contact zone, the beam/liquid/air
contact line and the clamp. In regime 2, D coincides with the
beam tip while in regime 3, both are separated by a distance d.
The s-axis is tangent to the beam in D, which corresponds to its
origin s = 0. In regime 2, it makes an angle αd with the substrate.
The beam deflection y(s) is measured perpendicularly to this s-
axis. The local beam slope is ϕ(s) = arctan(dy/ds). By definition,
y(0) = ϕ(0) = 0. The clamp is at position (sc,yc) and the beam
slope satisfies ϕ(sc) = αc−αd .

The forces that apply on the beam were described in the main
text. They are recalled in the schematics of figure 1. The reac-
tion force in D can be projected in the (s,y) coordinates: N0 =

Nd cosαd −Td sinαd along y and T0 = Nd sinαd +Td cosαd along s.
Therefore,

T0 = N0
tanαd +µ

1−µ tanαd
. (1)

As the beam is a slender body, it always prefers bending instead
of stretching, so its deflection y(s) satisfies the Euler-Bernoulli’s
equation, Bκ(s) = M(s) where κ(s) is the local beam curvature
and M(s) the moment at abscissa s. In the wet part between D
and W,

M(s) = Md +N0s−T0y−
∫ s

0

σW
R

[
(s− s′)ds′+(y− y′)dy′

]
(2)
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Fig. 1 Two-dimensional schematics of the beam (green), the clamp (or-
ange), the substrate (apricot) and the capillary bridge (blue). (a) Regime
2, represented with an inclination αd , and (b) regime 3. Forces and mo-
ments applied to the beam are represented in red. The main variables of
the model are indicated.
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while in the dry part between W and C,

M(s) = Md +N0s−T0y−
∫ sw

0

σW
R

[
(s− s′)ds′+(y− y′)dy′

]
− σW (s− sw)sin(θb +ϕw)

+ σW (y− yw)cos(θb +ϕw) (3)

where sw, yw and ϕw are the position, deflection and inclination
at point W.

We consider small beam deflections, i.e. y2 � s2 and tanϕ =

dy/ds � 1, so the bending curvature can be approximated by
d2y/ds2 and the Euler-Bernoulli equation simplifies into:

d2y
ds2 +

T0

B
y =

Md

B
+

N0

B
s− s2

2R`2 (4)

for the wet part, and

d2y
ds2 =

[
cos(θb +ϕw)

`2 − T0

B

]
y+

Md

B
+

N0

B
s+

s2
w−2ssw

2R`2

− s− sw

`2 sin(θb +ϕw)−
yw

`2 cos(θb +ϕw) (5)

for the dry part.

Besides boundary conditions, the beam is subjected to three
geometrical constraints. Firstly, as it cannot stretch, its length L
should satisfy

L = d +
∫ sc

0

√
1+
(

dy
ds

)2
ds' d + sc +

1
2

∫ sc

0
tan2

ϕds (6)

Secondly, the circular liquid-air interface of the capillary bridge
should connect to both the substrate and the beam with contact
angles θb and θs, respectively. This is satisfied if

zw = sw sinαd + yw cosαd = R [cosθs + cos(θb +αd +ϕw)] (7)

And thirdly, the volume of liquid per unit width V/W =ΩL2, given
by

ΩL2 '
∫ xw

0
zdx+

R2

2
[θs +θb +αd +ϕw−π]

+
R2

2
sin(θb +αd +ϕw) [2cosθs + cos(θb +αd +ϕw)]

− R2

2
cosθs sinθs (8)

should remain constant, where x = scosαd − ysinαd and∫ xw

0
zdx =

s2
w− y2

w
2

sinαd cosαd

+
∫ sw

0

[
ycos2

αd − s
dy
ds

sin2
αd

]
ds. (9)

The reaction forces and moment at the clamp are given by

Nc

B
=

Nd

B
− xw

R`2 −
1
`2 sin(θb +αd +ϕw)

Tc

B
=

Td

B
+

zw

R`2 −
1
`2 cos(θb +αd +ϕw)

Mc

B
=

d2y
ds2

]
s=sc

(10)

1.1 Wet part

1.1.1 Regime 2:

In this regime, Md = 0 and, in the limit of low friction where
T0� B/s2

w, the wet part obeys

d2y
ds2 =

N0

B
s− s2

2`2R
(11)

The solution to this equation that satisfies y = dy/ds = 0 in s = 0 is

dy
ds

=
N0s2

2B
− s3

6`2R
(12)

y =
N0s3

6B
− s4

24`2R
(13)

Since dy/ds = tanϕw in s = sw, equations 12 and 13 can be rewrit-
ten in sw as:

s2
w

6`2R
=

N0sw

2B
− tanϕw

sw
(14)

yw =
N0s3

w
24B

+
sw tanϕw

4
(15)

Combining them with the geometrical condition on the liquid-
air interface (eq. 7) yields:(

N0sw

2B

)2
+2
(

tanϕw

sw
+6

tanαd

sw

)
N0sw

2B

− 3
tanϕw

sw

(
tanϕw

sw
+4

tanαd

sw

)

− 2
cosθs + cos(θb +αd +ϕw)

`2 cosαd
= 0

This quadratic equation can be solved for N0sw/(2B). The discrim-
inant ρ satisfies

ρ
2 =

4
s2

w
(tanϕw +3tanαd)

2 +2
cosθs + cos(θb +αd +ϕw)

`2 cosαd
(16)

Only the solution N0 > 0 is kept since the beam touches the sub-
strate in regime 2, namely

N0sw

2B
= ρ− tanϕw +6tanαd

sw
(17)

Then,
s2

w
6`2R

= ρ− 2tanϕw +6tanαd

sw
(18)
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and

yw =
s2

w
12

[
ρ +

2tanϕw−6tanαd

sw

]
(19)

The liquid volume is evaluated by considering that∫ sw

0
yds =

s3
w

60

(
2ρ +

tanϕw−12tanαd

sw

)
∫ sw

0

dy
ds

sds =
s3

w
20

(
ρ +

3tanϕw−6tanαd

sw

)
(20)

The wet beam length is

Lw = sw +
s7
w

504`4R2 −
N0s6

w
72B`2R

+
N2

0 s5
w

40B2 (21)

1.1.2 Regime 3:

In this regime, αd = 0 which implies N0 = Nd , and T0 = 0. The wet
part obeys

d2y
ds2 = (s+md)

Nd

B
− 1

2R`2

[
s2 +d2(1−2m)

]
(22)

The solution to this equation that satisfies y = dy/ds = 0 in s = 0 is

dy
ds

=
Nd

2B

(
s2 +2mds

)
− s3 +3d2(1−2m)s

6`2R
(23)

y =
Nd

6B

(
s3 +3mds2

)
− s4 +6d2(1−2m)s2

24`2R
(24)

For the sake of simplifying notations, we define

a =
md
sw

, b =
(1−2m)d2

s2
w

(25)

Since dy/ds = tanϕw in s = sw, equations 23 and 24 can be rewrit-
ten in sw as:

(1+3b)
s2

w
6`2R

= (1+2a)
N0sw

2B
− tanϕw

sw
(26)

4(1+3b)
yw

s2
w

= (1+6a−6b)
N0sw

6B

+ (1+6b)
tanϕw

sw
(27)

Combining them with the geometrical condition on the liquid-air
interface (eq. 7) yields:

(1+6a−6b)(1+2a)
(

Ndsw

2B

)2

+ 2(1+12b+18ab)
tanϕw

sw

Ndsw

2B

− 3
tan2 ϕw

s2
w

(1+6b)

− 2(1+3b)2 cosθs + cos(θb +ϕw)

`2 = 0 (28)

This quadratic equation can be solved for Ndsw/(2B). The dis-
criminant is then

ρ
2 = 4(1+3a)2(1+3b)2 tan2 ϕw

s2
w

(29)

+ 2(1+3b)2(1+2a)(1+6a−6b)
cosθs + cos(θb +ϕw)

`2

and only the solution Nd > 0 is kept.

The liquid volume is evaluated by considering∫ sw

0
yds =

Nds4
w

24B
(1+4a)− s5

w
120`2R

(1+10b) (30)

The wet beam length is

Lw = sw +
s7
w

504`4R2 −
Nds6

w
72B`2R

+

(
N2

d
4B2 −

Md

3B`2R

)
s5

w
10

+
NdMds4

w
8B2 +

M2
d s3

w

6B2 (31)

where we recall that

Md

B
=

Nd

B
md− d2(1−2m)

2R`2 = a
Ndsw

B
−b

s2
w

2R`2 (32)

1.2 Dry part

We define

K =
T0

B
− cos(θb +ϕw)

`2 (33)

If K > 0, then k =
√

K and Euler-Bernoulli’s differential equation
becomes

d2y
ds2 + k2y = Gs+H (34)

where

G =
N0

B
− sw

`2R
− sin(θb +ϕw)

`2

H =
Md

B
+

s2
w

2`2R

+
sw sin(θb +ϕw)

`2 − yw cos(θb +ϕw)

`2 (35)

The solution that satisfies boundary conditions at the contact line
is:

y(s)− yw−
t
k

tanϕw =
C1

K
(1− cos t)+

C2

kK
(t− sin t)

tanϕ(s)− tanϕw =
C1k
K

sin t +
C2

K
(1− cos t) (36)

where t = k(s− sw) and

C1 =
Md

B
+

N0

B
sw−

T0

B
yw−

s2
w

2`2R

C2 =
N0

B
− T0

B
tanϕw−

sw

`2R
− sinθb

`2 cosϕw
(37)
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The dry length Ld between points W and C is given by

Ld =

(
1+

1
2

tan2
ϕw

)
tc
k
+

C1C2

2K2 (1− cos tc)2

+
C2

1
8Kk

(2tc− sin2tc)+
C2

2
8K2k

(6tc−8sin tc + sin2tc)

+
C1 tanϕw

K
(1− cos tc)+

C2 tanϕw

Kk
(tc− sin tc) (38)

with tc = k(sc− sw). The clamp position sc is determined through
the non-stretching condition L= d+Lw+Ld . Finally, the clamping
condition ϕ(sc) = αc−αd needs to be imposed.

If K < 0, then k =
√
−K and

d2y
ds2 − k2y = Gs+H (39)

The solution that satisfies boundary conditions at the contact line
is:

y(s)− yw−
t
k

tanϕw =
C1

K
(1− cosh t)+

C2

Kk
(t− sinh t)

tanϕ(s)− tanϕw = −C1k
K

sinh t +
C2

K
(1− cosh t) (40)

where again t = k(s− sw).
The dry length is then given by

Ld =

(
1+

1
2

tan2
ϕw

)
tc
k
+

C1C2

2K2 (cosh tc−1)2

+
C2

1
8Kk

(2tc− sinh2tc)+
C2

2
8K2k

(6tc−8sinh tc + sinh2tc)

+
C1 tanϕw

K
(1− cosh tc)+

C2 tanϕw

Kk
(tc− sinh tc) (41)

1.3 Solving the system of equations
In the previous section, the model of beam deflection has been
progressively reduced from a system of differential equations with
boundary conditions to a system of non-linear algebraic equa-
tions. This latter has been solved iteratively in Matlab according
to the following procedure:

1. For a given value of ϕw (here chosen within [−5◦,12◦]),

(a) Consider a range of values for sw (here chosen between
10−4L and L),

(b) Calculate ρ(sw), N0(sw), R(sw), yw(sw) and V (sw) ac-
cording to section 1.1. In regime 3, both solutions ±ρ

should be considered, and only the one yielding V > 0
and yw > 0 is kept.

(c) Find sw that yields the desired liquid volume V [the
function V (sw) is monotonic].

(d) Find the clamp position sc that yields the desired beam
length L = d + Lw + Ld [the function L(sc) is mono-
tonic]. Deduce yc and ϕc.

2. Loop on ϕw (i.e., repeat step 1.) until the boundary con-
dition ϕc = αc − αd at the clamp is satisfied. A bisection

method was adopted, as there may be several solutions and
no guarantee of convergence. Only the less deformed solu-
tion (i.e. the solution of smallest |ϕw|) was kept.

3. Calculate the reaction forces at the clamp Nc, Tc and Mc.

This process involves one main loop (ϕw) and two independent
secondary loops (sw and sc). It is therefore much simpler and less
time consuming to solve than the initial model based on the Euler-
Bernoulli differential equation with several boundary conditions
and geometrical constraints.

2 Alternative hypothesis of constant Md

The model of regime 3 is based on the hypothesis of a distributed
reaction force through the parameter m. In the previous models
of elastocapillary adhesion, the reaction force was assumed to be
localized in D and constant (possibly equal to zero). Following a
similar approach to section 1.1 with this new hypothesis on Md ,
we find

ρ
2 =

(
Md

B
+2

tanϕw

sw

)2
+2

cosθs + cos(θb +ϕw)

`2

N0sw

2B
= ρ− 2Md

B
− tanϕw

sw

s2
w

6R`2 = ρ− Md

B
−2

tanϕw

sw
(42)

and a deflection

y =
Md

2B
s2 +

N0

6B
s3− s4

24R`2 (43)

in the wet zone.

3 Dry adhesion in regime 3
In the absence of a liquid bridge, the aforementioned equations
are greatly simplified. If we further assume that there is still no
friction, the Euler-Bernoulli equation becomes

B
d2y
ds2 = Nds+Md . (44)

The beam deflection is then

y(s) = (−2yc +αcsc)

(
s
sc

)3
+(3yc−αcsc)

(
s
sc

)2
, (45)

where sc = L−d. It satisfies y(0) = y′(0) = 0, y(sc) = yc and y′(sc) =

αc. The curvature is

y′′ =
(
−12

yc

s2
c
+6

αc

sc

)
s
sc

+

(
6

yc

s2
c
−2

αc

sc

)
, (46)

from which we infer

Nd =
B
sc

(
−12

yc

s2
c
+6

αc

sc

)
and Md = B

(
6

yc

s2
c
−2

αc

sc

)
. (47)

As the beam shall not penetrate the underlying substrate,
y′′(0)≥ 0, which yields

sc ≤
3yc

αc
. (48)
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We may here attempt to determine sc (and so d) through energy
arguments. The internal bending energy of the beam is

U =
∫ sc

0

B
2
(y′′)2dx =

2B
sc

[
3

y2
c

s2
c
−3

ycαc

sc
+α

2
c

]
. (49)

The external work of the loads is

W =−αcMc + ycNc. (50)

If the beam is free to slide along the substrate, there is no external
force in the s direction so W is independent of sc. We may consider
an additional adhesive energy Ea =−ξ (L− sc).

The total potential energy is therefore

Π(yc,αc,sc) = U +W +Ea (51)

=
2B
sc

[
3

y2
c

s2
c
−3

ycαc

sc
+α

2
c

]
−αcMc + ycNc−ξ (L− sc).

It should be minimum regarding the three possible displacements

yc, αc and sc:

∂Π

∂yc

]
αc,sc

= 0 ⇒ Nc

B
=−12

yc

s3
c
+6

αc

s2
c

(52)

∂Π

∂αc

]
yc,sc

= 0 ⇒ Mc

B
=−6

yc

s2
c
+4

αc

sc
(53)

∂Π

∂ sc

]
yc,αc

= 0 ⇒
√

ξ

2B
s2

c +αcsc−3yc = 0. (54)

This latter equation can only be satisfied in the adhesive regime
(ξ > 0). If the solid-solid interaction is not energetically
favourable (ξ < 0), then ∂Π

∂ sc
< 0 and the minimum is found when

sc = 1, i.e. when the contact area between the beam and the sub-
strate is reduced to 0.

For ξ > 0, an equilibrium in sc < 1 satisfying equation (54) is
necessarily stable since

∂ 2Π

∂ s2
c
=

6B
s5

c

[
(3yc−αcsc)

2 +3y2
c

]
> 0. (55)

The solution sc to Eq. (54) is in the range ]0,L[ when

yc <
αcL

3
+

L2

3

√
ξ

2B
. (56)

We note that Md =
√

2ξ B is constant.
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