SUPPLEMENTARY MATERIAL

In between molecules and self-assembled fibrillar networks: Highly stable nanogel particles from a low molecular weight hydrogelator

Ana Torres-Martínez, César A. Angulo-Pachón, Francisco Galindo* and Juan F. Miravet*

1. NMR spectra

2. Determination of minimum gelation concentration (mgc)

Table S1. Minimum	gelation of	concentration	of compound	1 in	different	solvents
	0					

Column	mgc				
(mg/mL)		(mM)			
Acetonitrile	6	18			
Dicloromethane	6	18			
Toluene	1	3			
Water	5	16			
Ethyl acetate	13	38			
Chloroform	Soluble				
Tetrahydrofurane	Soluble				
Ethanol	Soluble				
Methanol	Soluble				

3. pKa determination

Figure S3. Calculated (Hyperquad) vs observed pH for the potentiometric titration of 1 with HCl 0.1M.

4. Dynamic light scattering

Figure S4. Correlation function of a representative DLS measurement of nanogel particles of 1 obtained from the xerogel from toluene.

Figure S5. Influence of the concentration in the diameter of the nanoparticles formed by 1 in PBS.

Figure S6. DLS analysis of size distribution by intensity (solid line) and by number (dash-dot line) of a representative sample of nanogel particles obtained from a xerogel from water.

5. Static light scattering

[1] _{total}	[1] _{ionized}	[1] _{free, neutral}	[1] _{nanoparticles}
0.274	0.026	0.075	0.173
0.377	0.036	0.075	0.266
0.480	0.046	0.075	0.359
0.582	0.055	0.075	0.452
0.685	0.065	0.075	0.545

Table S2. Calculated concentration (mg mL⁻¹) of aggregated 1 in the samples used in SALS.^a

^a [1]_{ionized} is calculated for a system with pH=6.4 and pKa=7.6; [1]_{free, neutral} corresponds to the *cac* value, 0.2 mM, 0.075 mg mL⁻¹

Figure S7. Debye plot for determination of M_w of standard polystyrene latex particles (d= 100 nm).

6. Differential scanning calorimetry

Figure S8. DSC traces of the xerogels from toluene (left) and water (right).