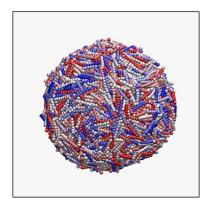
Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2019


Supplementary Information for

## Effects of Droplet Size and Surfactants on Anchoring in Liquid Crystal Nanodroplets

Zeynep Sumer and Alberto Striolo\*

Department of Chemical Engineering, University College London London WC1E 7JE, United Kingdom \*Corresponding author: <u>a.striolo@ucl.ac.uk</u>

In Figure S1 and S2, simulations were conducted for  $3 \times 10^6$  steps and configurations were recorded for last  $10^6$  steps (last 0.149 µs). Within these  $10^6$  steps of simulation production, data are collected in every  $10^4$  steps and averages of 100 frames are used for quantitative analysis. Last frames of each simulations are used for visuals.



**Figure S1.** Snapshot of the simulation conducted at 1.0  $k_BT$  where repulsion coefficient between water/LC beads was 50  $k_BT/r_c$ . Orientational order (S) was calculated as 0.01±0.01.

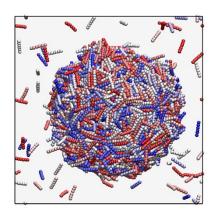
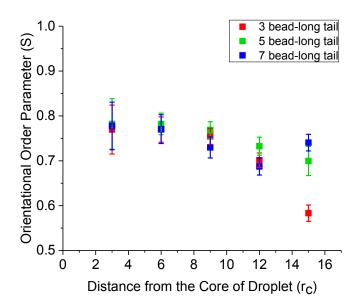




Figure S2. Snapshot of the simulation conducted at 0.62  $k_BT$  where repulsion coefficient between water/LC beads was 30  $k_BT/r_c$ .



**Figure S3.** Orientational order of LC molecules for the droplets shown in Figure 3, shown as a function of the distance from the droplet core, within intervals of width 3 r<sub>c</sub>.