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Optimization over Competing Structures for Ground State Calculation 
The structures included in the ground state calculations are n‐particle crystals with periodic configurations 

containing  n  particles  per  unit  cell,  n  =  1,  2,  3.  Shape  deformation  of  the  unit  cell  is  allowed. More 

complexity can be achieved by including structures with more particles in each unit cell.  

 

Figure S1 ‐ Unit cell for structures with (a) one particle (b) two particles (c) three particles. 

Optimized structures by optimization over competing structures 
Five  crystal  phases  are  identified  in  the  ground  state  calculation:  triangular  phase,  stripe  (affinely‐

stretched triangular) phase, honeycomb phase, kagome phase and a second triangular phase. Table S1‐

S3 gives the optimized lattice parameters for each crystal phases and Figure S2 gives an example crystal 

structures for each phase mentioned above. 

Table S1. Optimized lattice parameters for f = 50

Packing Fraction  0.23‐0.88  0.95‐1.26 1.31‐1.59  1.68‐1.87 1.93‐2.40 

Optimized Structure  Triangular  Stripe  Honeycomb  Kagome  Triangular 

a  2.03‐3.94  2.10‐2.11 2.14‐2.45  2.42‐2.56 1.23‐1.37 

b/a  1.00  0.60‐0.81 1  1.00  1.00 

ϴ  60  66‐72  53‐60  60  60 

c/a 

‐ 

1.16‐1.28  0.5 

‐ 
α  25‐29  0 

d/a 
‐ 

0.87 

ϒ  30 
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Figure S2 ‐ Optimized ground state structures for f = 150. (a) triangular phase, η = 0.55, (b) stripe phase, η = 
1.13, (c) honeycomb phase, η = 1.45, (d) kagome phase, η = 1.82, (e) the second triangular phase, η = 2.08. 

Table S2. Optimized lattice parameters for f = 68

Packing Fraction  0.24‐0.89  0.99‐1.29 1.35‐1.61  1.70‐1.93 2.01‐2.40 

Optimized Structure  Triangular  Stripe  Honeycomb  Kagome  Triangular 

a  2.02‐3.90  2.09‐2.13 2.12‐2.42  2.38‐2.53 1.23‐1.34 

b/a  1.00  0.58‐0.75 1  1.00  1.00 

ϴ  60  67‐73  55‐60  60  60 

c/a 

‐ 

1.16‐1.25  0.5 

‐ 
α  26‐28  0 

d/a 
‐ 

0.87 

ϒ  30 

Table S3. Optimized lattice parameters for f = 150

Packing Fraction  0.26‐0.89  1.05‐1.35 1.43‐1.65 1.78‐1.92 2.02‐2.40 

Optimized Structure  Triangular  Stripe  Honeycomb  Kagome  Triangular 

a  2.02‐3.72  2.08‐2.12 2.10‐2.29  2.44‐2.32  1.28‐1.23 

b/a  1.00  0.57‐0.69 1.00  1.00  1.00 

ϴ  60  69‐73  57‐60  60  60 

c/a 

‐ 

1.16‐1.22  0.5 

‐ 
α  14‐29  0 

d/a 
‐ 

0.87 

ϒ  30 

 



3 
 

Genetic Algorithm Methodology for Ground State Calculation 
Gottwald et al. has successfully demonstrated the application of genetic algorithms (GAs) to predict the 

equilibrium crystal structures for this type of system in three dimensions1.  The same approach is adapted 

to 2D systems in our work.   

The individual candidates in our case are lattice structures; the target is the lattice structure that gives the 

lowest	ݑ. The unit cell is represented by the primitive vector {࢞࢏} = {࢞૚,࢞૛}. 

࢞૚ ൌ ܽሺ1,0ሻ 

࢞૛ ൌ ܽሺݔ cos ߠ , ݔ sin                               ሻ                                                                  (1)ߠ

where	ܽ is determined by the areal packing fraction of the system. The other parameters are limited as 

follow:  

0 ൏ ݔ ൑ 1,  0 ൏ ߠ ൑
గ

ଶ
                                                                      (2) 

The positions of ܾ particles in a unit cell are represented by vector	࢟࢏ ,࢏ ൌ 1,… , ܾ.	  

࢏࢟  ൌ ൜
૙,																										݅ ൌ 1																			
∑ ܿ௜௝௝ୀଵ,ଶ ࢞࢐,						݅ ൌ 2,… , ܾ									                                         (3) 

The value of ܿ is limited by 0 ൑ ܿ ൏ 1.  ܾ is set to be 4 in our calculation. An individual is represented by 
eight variables: {	ݔ, ,ߠ ܿଶଵ, ܿଶଶ, ܿଷଵ, ܿଷଶ, ܿସଵ, ܿସଶሽ. Each of the variables are represented by a string of genes 
of different length  ෨ܾ௜.  ෨ܾ௜ are sequences of 0’s and 1’s  in binary alphabet, corresponding to the decimal 

number  ሶܾ ௜. The value of variables can be given as follow:  

ݔ ൌ 	
௕ሶೣାଵ

௕ሶೣ,೘ೌೣାଵ
 , ൌ

గ

ଶ
	

௕ሶഇାଵ

௕ሶഇ,೘ೌೣାଵ
 ,  ܿ ൌ 	

௕ሶ೎
௕ሶ೎,೘ೌೣାଵ

                                 (4) 

Here the  ෨ܾఏ is represented by a string of 7 genes and all other  ෨ܾ’s to be a string of 5 genes, such that each 
individual is represented by 42 genes. Additional genes for each individual force longer simulation time 

before the system converges. The above choice of b and length of  ෨ܾ௜ address the complexity and accuracy 

of potential structures while allowing the system to converge within a reasonable timescale.  

GAs  require  that  each  individual  is  represented  by  a  uniquely  defined  structure:    a  conversion  of  all 

equivalent unit  cells  to  the  same   {࢏࢞} for which  the  circumference of  the  cell  is minimal.  This  can  be 

achieved by checking the circumference of the following 4 cells: {࢞૚ േ ࢞૛,࢞૛}, {࢞૚,࢞૚ േ ࢞૛}. The one gives 
smallest circumference is taken as the new primitive vectors until none of the above four gives a smaller 

circumference than {࢞૚,࢞૛}. ࢞૛ is inverted when necessary so that the vector is positive. The equivalent 
set of ࢟࢏ is reduced by sorting vector ࢟࢏ by ࢞૚ coordinate and then by ࢞૛ coordinate. 

For  each  individual  a  positive  fitness  value ܨ  is  assigned  based  on  the  calculated  potential ݑ  of  the 
corresponding lattice. As the goal is to minimize	ݑ, the fitness function is chosen to be:  

ܨ ൌ exp	ሺ1 െ
௨

௨೟ೝ೔

ԑሺ௜ሻ
ሻ                                                                       (5) 

Where ݑ௧௥௜	is the potential of a triangular lattice, ԑሺ݅ሻ is a factor based on the generation	݅.    

ԑሺ݅ሻ ൌ 1 ൅ ݅
௟௢௚ሺ௜ሻ

ସ଴
                                                                              (6) 
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The fitness function ensures a negative correlation between ܨ and ݑ. The exponential factor ԑሺ݅ሻ makes 

the choice of the fittest individual more selective as ݅ increases, which speeds up the convergence.  

The  ground  state  calculation  with  the  genetic  algorithm  started  with  1000  random  individual 

configurations  and  the  population  remained  unchanged  throughout  the  calculation.  The  crossover 

possibility  ௖ܲ ൌ 0.1 and mutation possibility	 ௠ܲ ൌ 0.05 were adopted. All trials were carried out with ݂ ൌ
50, 68, 150 and packing fraction from 0.1 to 2.4, converging within 1000 generation. 

Optimized structures by genetic algorithm 
The most complex structure predicted has three particles in each unit cell, showing the choice of b = 4 for 

GAs is adequate. GA was used at multiple packing fraction to verify the predicted ground state structure 

by  optimizing  over  a  pool  of  completing  structures.  This  should  rule  out  any  complex  structures  not 

considered in the pool. As shown in Table S4‐Table S6, GA predicts the same ground‐state (GS) structures 

as given in Table S1‐Table S3. No new ground state structures are identified. 

Table S4. Predicted ground state structures with GA for f = 50 

packing fraction   0.60  0.80  1.00  1.20  1.40  1.70  1.80  2.00  2.20  2.40 

Predicted GS  T  T  S  S  HC  HC  K  T  T  T 

GA results  T  T  S  S  HC  HC  K  T  T  T 

Table S5. Predicted ground state structures with GA for f = 68 

packing fraction   0.60  0.80  1.00  1.20  1.40  1.60  1.80  2.00  2.20  2.40 

Predicted GS  T  T  S  S  HC  HC  K  C  T  T 

GA results  T  T  S  S  HC  HC  K  T  T  T 

Table S6. Predicted ground state structures with GA for f = 150 

packing fraction   0.60  0.80  1.10  1.20  1.45  1.60  1.80  1.90  2.05  2.20 

Predicted GS  T  T  S  S  HC  HC  K  K  T  T 

GA results  T  T  S  S  HC  HC  K  K  T  T 
Note: T ‐ triangular, S ‐ stripe, HC ‐ honeycomb, K – kagome. 

Structure factor 
The structure factor ܵሺࢗሻ is calculated with both isotropic formula (Eq.7)  

ܵሺݍሻ ൌ 	
ଵ

ே
∑ ∑ ௝௞ሻݎݍ଴ሺܬ

ே
௞ୀଵ

ே
௝ୀଵ                   (7)                                  

where	ࢗ is the scattering vector, N is the total number of particles in system, ࡾ is the position of particles  

ݍ ൌ ௝௞ݎ ,|ࢗ| ൌ ௝ࡾ| െ   .௡ is the Bessel function of the first kindܬ .|௞ࡾ

While Figure 5. in the manuscript gives ܵሺݍሻ calculated with isotropic formula, it tends to overestimate 

ܵሺݍሻ for  low ࢗ. The  overestimation  of ܵሺݍሻ for  the  experimental  data  is  not  as  obvious  because  the 

system size for experimental data is much larger than the simulation.  

Estimation of corona diameter 
The  corona  diameter  of  PGNCs  is  estimated  from  the measured  solvent  intake  by  the  deposited  PS‐

homopolymer film2. And the following experimental data were given. 1) The Fe3O4 core radius is rc = 2.1 
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nm for the sampled particles with f = 68. 2) The film thickness is measured to be t = 136 nm. 3) If the entire 

film is composed of selling part, the expected film thickness should be tswell = 99.2 nm, fitted from solvent 

intake measurements. 4) The particle radius including the non‐swelling coat is estimated to be rnon−swell = 

3.2 nm. 

௏

௏೙೚೙షೞೢ೐೗೗
ൌ

௧

௧ି௧ೞೢ೐೗೗
ൌ ሺ

௥

௥೙೚೙షೞೢ೐೗೗
ሻଷ  .                                                           (8) 

With the above data, the radius of the sampled PGNCs with f = 68 is estimated to be r = 4.9 nm, σ = 9.8 

nm. The PGNCs with f = 50 contains a Fe3O4 core with 3.9 nm diameter. No solvent intake information is 

available.  With the smaller hard core, we are expecting a particle radius slightly smaller than 4.9 nm for f 

= 50 samples.   
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Figure S3 ‐ Radial distribution function from GCMC at (a) f = 50, η = 0.67; (b) f = 68, η = 
0.66. Both indicate the triangular ordering. 


