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Hybrid Pseudo-Spectral/Finite-Difference Method

In a previous paper,S1 several of us outlined a method for solving the multi-fluid model

represented by Equations 1–3 in the main text using pseudo-spectral methods and a semi-

implicit time discretization scheme. The combination of accuracy and stability provided by

these methods allows one to efficiently solve the multi-fluid model equations in spite of the

inherent disparity of length and time scales in the model.

The choice of a pseudo-spectral (PS) spatial discretization was key to the previous

method’s success. As mentioned, PS methods give unparalleled accuracy, and Fourier trans-

forms result in diagonal terms for linear differential operators, allowing a facile solution to
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the semi-implicit schemes that stabilize the time integration.S1 Unfortunately, PS methods

are limited to periodic boundary conditions (with a full Fourier transform) or homogeneous

Dirichlet/Neumann conditions (with sine/cosine transforms), neither of which is sufficient

to model a large nonsolvent bath.S2

Alternatively, finite difference (FD) methods provide ample flexibility in treating bound-

ary conditions, but are considerably less accurate than PS schemes. Worse still, a multi-

dimensional FD discretization results in a large, sparse matrix that is costly to invert when

time-stepping with a semi-implicit method.

In an attempt to capture the major benefits of both approaches, we present here a hybrid

PS/FD spatial discretization scheme where one dimension is treated via finite differences,

and the remaining dimensions are discretized pseudo-spectrally. The single FD dimension is

able to provide time-dependent, inhomogeneous boundary conditions that are flexible enough

to simulate the nonsolvent bath. Additionally, this one-dimensional discretization gives a

banded matrix that can be cheaply inverted in semi-implicit schemes.

Accordingly, numerical methods to solve both the convection-diffusion equation and the

momentum equations (Eqs. 1–3) using a hybrid PS/FD scheme to discretize space are de-

scribed below.

Diffusion Equation

It is convenient to examine the convection-diffusion equation, Eq. 1, written explicitly in

terms of the volume fractions, φi. To do so, we define diffusivity and gradient coefficient

matrices,

Dij =
∑
k

MikHkj (1)

Bij =
∑
k

MikKkj (2)
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where Mij is the mobility matrix, Hij is the Hessian matrix of second derivatives of the free

energy functional and Kij is a diagonal matrix of the gradient coefficients.S1 Substituting

these definitions into Eq. 1 in the main text yields,

∂φi

∂t
+ v · ∇φi = ∇ ·

[
p,n∑
j

(
Dij∇φj −Bij∇∇2φj

)]
(3)

To integrate Eq. 3 we need a method for the time integration in addition to a discretization

of the spatial derivatives. We approximate the time derivative via a semi-implicit method.

We begin by re-arranging Eq. 3 to a more useful form. Positive and negative linear terms

are introduced on the right-hand side giving,

∂φi

∂t
+ v · ∇φi =∇ · (Dij∇φj) +D∗ij∇2φj −D∗ij∇2φj

−∇ ·
(
Bij∇∇2φj

)
+B∗ij∇4φj −B∗ij∇4φj.

(4)

Here, D∗ij and B∗ij are arbitrary constant matrices1, and summation over repeated indices has

been assumed in order to avoid cumbersome summation symbols. Defining δDij ≡ Dij−D∗ij

and δBij ≡ Bij − B∗ij as the difference between the concentration-dependent coefficient

matrices and our chosen constant matrices, Eq. 4 becomes,

∂φi

∂t
+ v · ∇φi = ∇ · (δDij∇φj) +D∗ij∇2φj −∇ ·

(
δBij∇∇2φj

)
−B∗ij∇4φj (5)

Finally, time is discretized with the non-linear terms being treated explicitly and the linear

terms being treated implicitly. Doing so gives,

φn+1
i − φn

i

∆t
+ vn · ∇φn

i = ∇ ·
(
δDn

ij∇φn
j

)
+D∗ij∇2φn+1

j −∇ ·
(
δBn

ij∇∇2φn
j

)
−B∗ij∇4φn+1

j (6)

which completes the semi-implicit time-stepping scheme.

1In our previous work,S1 we found that a prudent choice of D∗
ij and B∗

ij led to an unconditionally stable
time integration. Specifically, both matrices has to be (i) positive definite and (ii) have an eigenvalue at
least as large as the largest eigenvalue in Dij(φp, φn) or Bij(φp, φn) respectively.
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To compute φn+1
i in Eq. 6, the spatial derivatives must be discretized. In our previous

work, we approximated these derivatives using numerical Fourier transforms on a collocated

grid, i.e. a pseudo-spectral approximation.S1,S3 Presently, we will discretize the x-axis via

finite differences and the y and z dimensions pseudo-spectrally. Note that the choice of

which dimension to treat via FD is arbitrary, so we can choose x as the FD dimension

without a loss of generality.

First, we discretize the implicit terms to isolate φn+1
i . These terms contain second- and

fourth-order gradient operators, which when separating the x derivatives from the y and z

derivatives are given by,

∇2φj =
∂2φj

∂x2
+∇2

yzφj (7)

∇4φj =
∂4φj

∂x4
+ 2

∂2

∂x2
∇2

yzφj +∇4
yzφj (8)

where

∇yz =

(
∂φj

∂y
,
∂φj

∂z

)T

(9)

is a two-dimensional gradient for the PS directions only. Applying a yz-Fourier transform

to the operators gives,

Fyz[∇2φj] =
∂2φ̂j

∂x2
− q2φ̂j (10)

Fyz[∇4φj] =
∂4φ̂j

∂x4
− 2q2

∂2φ̂j

∂x2
+ q4φ̂j (11)

where the wavevector q = (qy, qz)
T , q = |q| and φ̂j = Fyz[φj].

With these expressions in hand, we now take the Fourier transform of Eq. 6, and substi-
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tute Eq. 10 and Eq. 11 where appropriate. This gives,

φ̂n+1
i − φ̂n

i

∆t
+ Fyz [vn · ∇φn

i ] = Fyz

[
∇ ·
(
δDn

ij∇φn
j

)]
−Fyz

[
∇ ·
(
δBn

ij∇∇2φn
j

)]
+D∗ij

(
∂2φ̂n+1

j

∂x2
− q2φ̂n+1

j

)
−B∗ij

(
∂4φ̂n+1

j

∂x4
− 2q2

∂2φ̂n+1
j

∂x2
+ q4φ̂n+1

j

)
(12)

which upon solving for φ̂n+1
j yields,

[
Iij −∆tD∗ij

(
∂2

∂x2
− q2

)
+ ∆tB∗ij

(
∂4

∂x4
− 2q2

∂2

∂x2
+ q4

)]
φ̂n+1
j =

φ̂n
i −∆tFyz

[
vn · ∇φn

i +∇ ·
(
δDn

ij∇φn
j

)
−∇ ·

(
δBn

ij∇∇2φn
j

)]
. (13)

To evaluate the x-derivatives on the left-hand side of Eq. 13, the x-direction is discretized

into a regular grid with M points and spacing ∆x. Finite difference formulasS4 are then

substituted for the x-derivatives into Eq. 13. For example, centered, second-order finite

difference formulas for an interior node at x = xm are given by,

∂2φ̂n+1
j,m

∂x2
≈
φ̂n+1
j,m+1 − 2φ̂n+1

j,m + φ̂n+1
j,m−1

∆x2
(14)

∂4φ̂n+1
j,m

∂x4
≈
φ̂n+1
j,m+2 − 4φ̂n+1

j,m+1 + 6φ̂n+1
j,m − 4φ̂n+1

j,m−1 + φ̂n+1
j,m−2

∆x4
(15)

where the subscript j indicates the component, the subscript m indicates the node and the

superscript n+ 1 indicates the time point. More details about boundary conditions and the

attendant complications of the treatment of the end nodes via finite differences can be found

below.

Upon substitution of the FD formulas, Eq. 13 is of the form

Aijφ̂
n+1
j = bi (16)
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where

Aij =

[
Iij −∆tD∗ij

(
∂2

∂x2
− q2

)
+ ∆tB∗ij

(
∂4

∂x4
− 2q2

∂2

∂x2
+ q4

)]
(17)

is a square M×M block-banded matrix where M = NM with N being the number of

components and M (as defined above) is the number of grid points spanning the x direction.

The right hand side is the M× 1 nonlinear vector function,

bi = f(φ̂n
i ) = φ̂n

i −∆tFyz

[
vn · ∇φn

i +∇ ·
(
δDn

ij∇φn
j

)
−∇ ·

(
δBn

ij∇∇2φn
j

)]
. (18)

The right-hand side vector, Eq. 18, can be evaluated at each FD node using a combination

of forward and inverse fast-Fourier transforms and finite difference formulas using the known

quanitity φn
j . For example, the second-order gradient can be decomposed into FD and PS

derivatives,

∇ · (δDn
ij∇φn

j ) =
∂

∂x

(
δDn

ij

∂φn
j

∂x

)
+∇yz · (δDn

ij∇yzφ
n
j ). (19)

Because of the non-constant coefficients δDn
ij and δBn

ij, care must be taken to use self-adjoint

finite difference operators for the x-derivative on the right-hand side of Eq. 19.S5 In this case,

the recursive, second-order, self-adjoint, centered finite difference formula

dfm
dx

=
fm+1/2 − fm−1/2

∆x
+ O(∆x2) (20)

results in

∂

∂x

(
δDn

ij,m

∂φn
j

∂x

)
=
δDn

ij,m+ 1
2

(φn
j,m+1 − φn

j,m)− δDn
ij,m− 1

2

(φn
j,m − φn

j,m−1)

∆x2
. (21)

for each node m, where δDn
ij,m+ 1

2

and δDn
ij,m− 1

2

can be obtained via linear interpolation. The

second term on the right-hand side of Eq. 19 can be evaluated using repeated forward and
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inverse Fourier transforms, for example,

Fyz[∇yz · (δDn
ij∇yzφ

n
j )] = iq · Fyz

[
δDn

ijF−1yz [iqφ̂n
j ]
]
. (22)

The method for evaluating the fourth-order gradient term and the edge nodes is similar to

the example shown here, noting that self-adjoint finite difference formulas are needed in both

cases.

Finally, once Aij and bi have been calculated (including the boundary conditions), the

linear equation (Eq. 16) can be solved. Because Aij is banded, it can be efficiently solved

in O(M) time, which was one of the primary motivating factors for using a hybrid FD/PS

method from the outset.

Momentum Equation

The main difficulty in solving the momentum equation (Eq. 2 in the main text) is (i) satisfy-

ing Eq. 3, the incompressibility constraint, and (ii) efficiently dealing with a concentration-

dependent viscosity. In our previous PS-only method,S1 (i) was accomplished by eliminating

the incompressibility constraint via the transverse projection operator, which can be ex-

plicitly written in terms of the wavevector q in Fourier space. Difficulty (ii) was overcome

by using an iterative Picard’s method modified with a first-order continuation guess and

Anderson mixing to accelerate convergence.

Moving to a hybrid FD/PS method, the transverse projection operator is no longer

a viable option for satisfying incompressibility. Instead, we derive a so-called “pressure–

Poisson” equationS6 that allows explicit access to the pressure and a subsequent solution to

Eq. 2. Fortunately, Picard’s method (accompanied by continuation and Anderson mixing)

is still an effective method for dealing with a concentration-dependent viscosity.

Anticipating the need to formally solve for v for a future Picard iteration, the first step

in the derivation of the numerical method involves the addition and subtraction of a linear
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viscous dissipation term to Eq. 2,

0 = −∇p−∇ ·Π +∇ ·
[
η(∇v +∇vT )

]
+ η∗∇2v − η∗∇2v (23)

where η∗ is an arbitrary constant2 chosen for stability in the Picard iteration. For conve-

nience, we define an excess stress tensor as the viscous stress due to the local difference in

viscosity from η∗,

σex ≡ (η − η∗)(∇v +∇vT ) (24)

which upon substitution into Eq. 23 and re-arrangement gives,

η∗∇2v = ∇ · (pI + Π− σex) (25)

By taking the divergence of Eq. 25, one obtains a pressure-Poisson equation

∇2p = ∇∇ : (σex −Π) (26)

noting that the term on the left-hand side is eliminated using incompressibility, ∇ · v = 0.

Equations 24–26 represent a complete statement of momentum conservation and incom-

pressibility, and can be used to solve for the velocity at a given time3. This is done by

discretizing the gradient operators and formally solving for p and v (remember that σex de-

pends on v). Both Eqs. 25 and 26 contain the Laplacian operator, which is given in Eq. 10

above. Expanding the Laplacian operators on the left-hand side and taking a yz-Fourier

2Our numerical testing indicates that choosing η∗ = max(η) results in an unconditionally stable iteration.
3Note that unlike the diffusion equation, no time derivative appears in Equations 24–26. Instead, the

time-dependence is implicit through the appearance of the volume-fraction in the osmotic stress and viscosity.
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transform gives,

(
∂2

∂x2
− q2

)
p̂ = Fyz [∇∇ : (σex −Π)] (27)(

∂2

∂x2
− q2

)
v̂ =

1

η∗
Fyz [∇ · (pI + Π− σex)] (28)

Using the finite difference formula in Eq. 14 for the x-derivatives, these discretized equations

reduce to a system of nonlinear equations of the form,

Bp̂ = g(φ̂n+1
i , v̂) (29)

Cv̂ = h(φ̂n+1
i , v̂, p̂) (30)

where B is an M ×M banded matrix and C is a 3M × 3M banded matrix. Because both

matrices are banded, they can be solved in O(M) time.

The coupled set of equations are iteratively solved using Picard’s method,

Bp̂k+1 = g(φ̂n+1
i , v̂k) (31)

Cv̂k+1 = h(φ̂n+1
i , v̂k, p̂k) (32)

where k denotes the iterative index. The method proceeds as follows:

1. The divergence of the osmotic stress tensor, ∇·Π (Eq. 8 in the main text), is calculated

using the volume fractions obtained from the diffusion equation, φn+1
i .

2. A velocity guess, vk is obtained from a continuation method based on the velocities at

previous timesteps, vn, vn−1, . . . , or previous iterations vk, vk−1, . . . , and is used to

calculate the divergence of the excess viscous stress, ∇ · σex.

3. ∇·Π and∇·σex are used to evaluate the right-hand side of Eq. 31, and the (now-linear)

system is solved for the pressure pk+1.
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4. The right-hand side of Eq. 32 is evaluated, and the linear system is solved for a new

velocity, vk+1.

5. The norm of the difference between velocity vectors, |vk+1 − vk| is compared to a

specified tolerance (in our case, typically 10−6). If the norm is small enough, the

iteration terminates. If not, one returns to step two4 and performs another iteration.

Finally, for completeness, we provide some details regarding the evaluation of the func-

tions,

g(φ̂n+1
i , v̂k) = Fyz [∇∇ : (σex −Π)] (33)

h(φ̂n+1
i , v̂k, p̂k) =

1

η∗
Fyz [∇ · (pI + Π− σex)] (34)

from the right-hand sides of Eqs. 31 and 32. For the most part, this process is straightforward,

and these functions are evaluated using principles similar to those discussed for the diffusion

equation. Namely, one must use (i) self-adjoint finite difference operators for the x-derivatives

and (ii) repeated forward and reverse yz-Fourier transforms for the y and z derivatives.

However, the expansion of the derivative operators in Eqs. 33 and 34 is more complex

than those on the right-hand side of the diffusion equation, so we document them here.

Expanding the terms in g gives,

∇∇ : σex = ∇∇ : (δη∇v) +∇∇ : (δη(∇v)T ) (35)

= 2
∂2

∂x2

(
δη
∂vx
∂x

)
+ 2∇yz ·

∂

∂x

(
δη
∂vyz
∂x

)
+ 2∇yz ·

∂

∂x
(δη∇yzvx) +∇yz∇yz : (δη∇yzvyz) ,

(36)

4The osmotic stress tensor is not a function of v or p and therefore only needs to be calculated once.
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and

∇∇ : Π = ∇ · (φiHij∇φj)−∇ ·
(
φiKij∇∇2φj

)
(37)

=
∂

∂x

(
φiHij

∂φj

∂x

)
+∇yz · (φiHij∇yzφj)

− ∂

∂x

(
φiKij

∂3φj

∂x3

)
− ∂

∂x

(
φiKij

∂

∂x
∇2

yzφj

)
−∇yz ·

(
φiKij∇yz

∂2φj

∂x2

)
−∇yz ·

(
φiKij∇yz∇2

yzφj

)
.

(38)

where δη = η − η∗ and vyz = (vy, vz)
T . Expanding the terms in h gives,

∇p =

(
∂p

∂x
,∇yzp

)T

(39)

∇ ·Π = φiHij∇φj − φiKij∇∇2φj (40)

=

(
φiHij

∂φj

∂x
− φiKij

∂3φj

∂x3
− φiKij∇2

yz

∂φj

∂x
,

φiHij∇yzφj − φiKij∇yz
∂2φj

∂x2
− φiKij∇yz∇2

yzφj

)T (41)

and

∇ · σex = ∇ · [δη(∇v +∇vT )] (42)

=

(
2
∂

∂x
(δη

∂vx
∂x

) +∇yz · (δη
∂vyz
∂x

) +∇yz · (δη∇yzvx),

∂

∂x
(δη

∂vyz
∂x

) +
∂

∂x
(δη∇yzvx) +∇yz · [δη(∇yzvyz +∇yzv

T
yz)]

)T

,

(43)

Numerically evaluating these expressions involves the use of both traditional and self-

adjoint finite differences to approximate the x-derivatives, and repeated forward and inverse
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yz-Fourier transforms where

Fyz[∇yz] = (iqy, iqz)
T (44)

Fyz[∇yz∇yz] =

 −q2y −qyqz

−qyqz −q2z

 (45)

are the pseudo-spectral yz-gradient operators. Finally, note that it is often convenient to

exchange the order of operations between the Fourier transforms, x-derivatives and yz-

derivatives, which is permitted since all are linear operators.

Boundary Conditions

As desired, the hybrid FD/PS method allows the implementation of boundary conditions

for both the diffusion and momentum equations. For the thin-film geometry, the diffusion

equation has two boundary conditions at each boundary (wall and bath). At the wall, we

have a mass-conserving, no-flux condition

Mij
dµi

dx

∣∣∣∣
x=wall

= 0, (46)

and a prescription of the local contact angle

dφi

dx

∣∣∣∣
x=wall

= −χwi

κ
(47)

where χwi is the interaction coefficient between component i and the wall. The conditions

in the bath are given by

lim
x→∞

φi = φb
i (48)

lim
x→∞

dφi

dx
= 0. (49)
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For the momentum equation, we have boundary conditions for the velocity only.S6 At

the wall, we have the customary no-slip and no-penetration conditions, v = 0. At the edge

of the bath, we also require v = 0, meaning the bath must still be large enough for all of the

relevant hydrodynamics to decay to zero before reaching the bath “boundary.” Future work

with these methods could go further to implement “open” boundary conditions obviating

the need for such a requirement.

In theory it is possible for a simulation of the thin film geometry with the above boundary

conditions to have a 2× speedup over an identical simulation using periodic conditions,

due to a reduction in the needed domain size. However, in practice we find that finite

difference derivatives require greater resolution than pseudospectral derivatives, eliminating

the potential benefit. We also found that our PS code design was inherently faster, due to

the relative easy and relatively low complexity compared to the hybrid FD/PS code. As

such, all of the simulations of the thin film geometry in the present work were performed

with the PS method.

However, long-time simulations require time-dependent boundary conditions, which can

only be achieved via the hybrid FD/PS code. In these calculations, a 1D periodic simulation

is first performed with a very large bath (typically Lx = 4092R0). Two “boundaries” are

then chosen: the axis of symmetry (the wall) and a point in the bath near to the eventual

interface between the film and bath. The latter (xbath) is chosen by convenience to be far away

from the phase separating interface, but small enough to lead to a significant reduction in

run-time. To verify that the choice of xbath did not result in significant errors, concentrations

from large-bath 1D simulations were compared to concentrations of 1D projections from the

higher dimensional simulations.
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At these boundaries, we proscribe,

φ2D
i (xwall, t) = φ1D

i (xwall, t) (50)

dφ2D
i (x, t)

dx

∣∣∣∣
x=xwall

=
dφ1D

i (x, t)

dx

∣∣∣∣
x=xwall

(51)

φ2D
i (xbath, t) = φ1D

i (xbath, t) (52)

dφ2D
i (x, t)

dx

∣∣∣∣
x=xbath

=
dφ1D

i (x, t)

dx

∣∣∣∣
x=xbath

(53)

for the volume fractions and

v(xwall, t) = 0 (54)

v(xbath, t) = 0 (55)

for the velocities. Again, when resolving hydrodynamics we require that the boundary be

sufficiently far from the interface, so the velocity decays to zero to avoid an unphysical

condition.

At the root of the hybrid FD/PS method, both the diffusion equation, Eq. 16, and

the momentum equation, Eq. 32 are block-diagonal, linear matrix equations. Boundary

conditions can be added by altering the elements of the matrix which correspond to the

boundary grid point. We use straightforward finite difference techniques to discretize these

boundary conditions.
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For periodic boundary conditions, we use centered finite differences for all derivatives,

df

dx

∣∣∣∣
xm

=
fm+1 − fm−1

2∆x
(56)

d2f

dx2

∣∣∣∣
xm

=
fm+1 − 2fm + fm−1

(∆x)2
(57)

d3f

dx3

∣∣∣∣
xm

=
fm+2 − 2fm+1 + 2fm−1 − fm−2

2(∆x)3
(58)

d4f

dx4

∣∣∣∣
xm

=
fm+2 − 4fm+1 + 6fm − 4fm−1 + fm−2

(∆x)4
(59)

where xm is the location of the gridpoint in the x-direction. As is standard, calls to off-grid

locations are “wrapped around” the boundary. For example if i = 0 on a grid with an upper

limit of Nx − 1 points, then the finite difference formula for the third derivative would be,

d3f

dx3

∣∣∣∣
x0

=
f2 − 2f1 + 2fNx−2 − fNx−3

2(∆x)3
. (60)

For non-periodic boundary conditions, we use one-sided finite differences.S4 On the left-

side boundary we use,

df

dx

∣∣∣∣
xm

=
−1

2
fm+2 + 2fm+1 − 3

2
fm

∆x
(61)

d2f

dx2

∣∣∣∣
xm

=
−fm+3 + 4fm+2 − 5fm+1 + 2fm

(∆x)2
(62)

d3f

dx3

∣∣∣∣
xm

=
−3

2
fm+4 + 7fm+3 − 12fm+2 + 9fm+1 − 5

2
fm

(∆x)3
(63)

d4f

dx4

∣∣∣∣
xm

=
−2fm+5 + 11fm+4 − 24fm+3 + 26fm+2 − 14fm+1 + 3fm

(∆x)4
(64)
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and on the right-side we use,

df

dx

∣∣∣∣
xm

=
1
2
fm−2 − 2fm−1 + 3

2
fm

∆x
(65)

d2f

dx2

∣∣∣∣
xm

=
−fm−3 + 4fm−2 − 5fm−1 + 2fm

(∆x)2
(66)

d3f

dx3

∣∣∣∣
xm

=
3
2
fm−4 − 7fm−3 + 12fm−2 + 9fm−1 + 5

2
fm

(∆x)3
(67)

d4f

dx4

∣∣∣∣
xm

=
−2fm−5 + 11fm−4 − 24fm−3 + 26fm−2 − 14fm−1 + 3fm

(∆x)4
. (68)

While the principles are simple, implementing boundary conditions requires tedious book-

keeping. Accordingly, we illustrate one example where we apply the boundary conditions

φp(x = 0) = φb
p

dφp

dx

∣∣∣∣
x=0

= 0 (69)

φn(x = 0) = φb
n

dφn

dx

∣∣∣∣
x=0

= 0 (70)

to the diffusion equation, Eq. 16. We do not show an example using the momentum equation,

but the procedure is identical. The first block row of Aijφj = bi contains the first boundary

condition and is given by 1 0 . . .

0 1 . . .



φp,0

φn,0

...

 =

φb
p

φb
n

 . (71)
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The second boundary condition is given on the second block row,

−3
2

0 2 0 −1
2

0 . . .

0 −3
2

0 2 0 −1
2

. . .





φp,0

φn,0

φp,1

φn,1

φp,2

φn,2

...



=

0

0

 . (72)

Note that applying these boundary conditions requires altering both the right and left hand

side of Eq. 16.

Non-periodic cases of Eq. 16 and Eq. 32 can be solved using a block-banded matrix

solver. However, when using periodic boundary conditions with the hybrid FD/PS method,

both matrices become cyclic. In this situation, we use the Sherman-Morrison-Woodbury

formula,S7 which allows one to get rid of the off-diagonal block elements and recover an

O(M) method.

Theory of Surface-Directed Spinodal Decomposition

Despite the fact that we do not have a direct solution of surface-directed spinodal decomposi-

tion for our ternary Flory-Huggins model, we can still be quantitative and use a prediction of

the front velocity v∗ and dominant wavenumber q∗ that Ball and Essery obtain based solely

on the dispersion relation of the linearized theory. Using the so-called marginal stability

hypothesis,S8–S10 they predict that the front velocity and dominant wave number are,

v∗ ≈ 4.588Mκq3m (73)

q∗ ≈ 1.083qm (74)
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where qm is the fastest growing mode from the linear stability analysis.

In a previous publication,S1 we looked at perturbations about a homogeneous state inside

the spinodal using the model described in Eq. 10 in the main text. Assuming a constant scalar

mobility M and pseudo-binary parameters, the dynamics of the most unstable eigenmode of

the system gives an identical dispersion relation to that obtained by Ball and Essery, which

in our notation is expressed as the largest eigenvalue,

λ+(q) = Mκq2(2q2m − q2). (75)

Because the dispersion relations are identical, Equations 73 and 74 remain valid for our

system, where the fastest growing mode is given by

q2m =
1

4κ

−( 1

Nφp

+
2

φs

+
1

φn

)
+

√(
1

Nφp

− 1

φn

)2

+ 4

(
1

φs

+ χ

) . (76)

Compared to the previous theoretical results, the above analysis of surface directed spin-

odal decomposition assumes the initial condition is prepared in an unstable state. Diffusion

from the bulk is present via a boundary condition, but it does not drive the phase separation.

Additionally, the analysis is limited to early-time behavior; we cannot infer anything about

coarsening processes that happen at late times.

Surface-directed spinodal decomposition also introduces new timescales. The timescale

for propagation of the spinodal wave through the film is given by lf/v
∗ ∼ lf/(Mκq3m).

However, if noise is present (even if only in the initial condition), the bulk of the film is

expected to undergo isotropic spinodal decomposition away from the interface at a time

λ+(qm)−1 = 1/(Mκq4m). Combining this rate and the wave velocity gives a prediction of a

length scale, 1/qm, at which a crossover should happen between surface-directed and bulk

spinodal decomposition. While this length scale is the same as the dominant wavelength, the

numerical prefactor will surely differ since the crossover length is sensitive to the strength of
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the density fluctuations and properties of the interface.S8

Data Tables

As discussed in the methods section, the data contained in the paper is from multiple simu-

lation data sets. For the early-time regime 1D, 2D and 3D simulations were performed with

periodic boundary conditions for t = {0, 2, . . . , 100}τR where τR is the Rouse time of the ref-

erence polymer.S1 In 1D simulations the domain was large (Lx = 4096R0) and the bath/film

interface was set in the middle of the domain (f = 0.5). Recall that an initial condition

which is symmetric about x must be used to satisfy the periodic boundary conditions, as in

Figure 2, halving the usable domain size. By necessity, 2D and 3D simulations were run in

smaller domains: Lx = 512R0, Ly = 256R0 for 2D and Lx = 64R0, Ly = 64R0, Lz = 64R0

for 3D. In all cases, the plane wave resolution was 2×R0, i.e. Nx = 2Lx, etc.

For the late-time regime 1D simulations were also performed with periodic boundary

conditions in a very long domain (Lx = 4096R0) for times t = {0, 100, . . . , 5000}τR. Unlike

the short-time calculations, the initial film thickness was varied for the longer time runs

with f = {0.025, 0.05, 0.1} where lf = fLx/2. 2D and 3D simulations were performed with

a truncated bath where an accompanying 1D simulation served as both the initial condition

and the time-dependent bath boundary condition. Again, 2D and 3D simulations were run in

smaller domains than were possible in 1D: Lx = 128R0, Ly = 128R0 for 2D and Lx = 128R0,

Ly = 64R0, Lz = 32R0 for 3D. For the 2D and 3D simulations with proscribed boundary

conditions, the resolution was increased to 4×R0 to account for the lower accuracy of finite

difference formulas relative to pseudospectral derivatives.

Below, we give three tables which summarize specific parameters where the data was

taken. Table S1 gives the free energy model (ternary Flory-Huggins) parameters which were

used. We have tried to be explicit in the main text, but unless otherwise noted, data were

taken using the “Base Case” given in the first line of the table. The remaining two tables show
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the initial film concentrations used in various simulations; Table S2 shows a coarse sweep

of composition space and Table S3 shows a finer sweep. All of the initial film compositions

used in the main text come from one of these two tables (e.g. Figure 5, Figure 7, and

Figure 9). To aid the reader, Figure S1 shows both of these sets of initial conditions plotted

in composition space with their corresponding run number.

Table S1: Energy model parameters used in all simulations. In all cases κpn = κps, χps = 0
and Ns = Nn = 1.

ID Np χpn χns κ

“Base case” 20 1.04805 0 2

“N=10” 10 1.21272 0 3.36866

“N=50” 50 0.91199 0 12.66652

“χpn = 1.2χc” 20 0.89833 0 2.49536

“χpn = 1.6χc” 20 1.19777 0 9.98142

“χns = 0.6χc” 20 1.04805 0.6 5.82250

“χns = 1.2χc” 20 1.04805 1.2 5.82250

Table S2: Coarse resolution sweep of the volume fraction of the film initial condition. The
initial bath concentration was always set to: φp = 0.01, φn = 0.98 and φs = 0.01.

Run no. φp φn φs Run no. φp φn φs

0 0.010 0.010 0.980 33 0.301 0.301 0.398

1 0.010 0.107 0.883 34 0.301 0.398 0.301

2 0.010 0.204 0.786 35 0.301 0.495 0.204

3 0.010 0.301 0.689 36 0.301 0.592 0.107

4 0.010 0.398 0.592 37 0.301 0.689 0.010

5 0.010 0.495 0.495 38 0.398 0.010 0.592

6 0.010 0.592 0.398 39 0.398 0.107 0.495

7 0.010 0.689 0.301 40 0.398 0.204 0.398

8 0.010 0.786 0.204 41 0.398 0.301 0.301
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9 0.010 0.883 0.107 42 0.398 0.398 0.204

10 0.010 0.980 0.010 43 0.398 0.495 0.107

11 0.107 0.010 0.883 44 0.398 0.592 0.010

12 0.107 0.107 0.786 45 0.495 0.010 0.495

13 0.107 0.204 0.689 46 0.495 0.107 0.398

14 0.107 0.301 0.592 47 0.495 0.204 0.301

15 0.107 0.398 0.495 48 0.495 0.301 0.204

16 0.107 0.495 0.398 49 0.495 0.398 0.107

17 0.107 0.592 0.301 50 0.495 0.495 0.010

18 0.107 0.689 0.204 51 0.592 0.010 0.398

19 0.107 0.786 0.107 52 0.592 0.107 0.301

20 0.107 0.883 0.010 53 0.592 0.204 0.204

21 0.204 0.010 0.786 54 0.592 0.301 0.107

22 0.204 0.107 0.689 55 0.592 0.398 0.010

23 0.204 0.204 0.592 56 0.689 0.010 0.301

24 0.204 0.301 0.495 57 0.689 0.107 0.204

25 0.204 0.398 0.398 58 0.689 0.204 0.107

26 0.204 0.495 0.301 59 0.689 0.301 0.010

27 0.204 0.592 0.204 60 0.786 0.010 0.204

28 0.204 0.689 0.107 61 0.786 0.107 0.107

29 0.204 0.786 0.010 62 0.786 0.204 0.010

30 0.301 0.010 0.689 63 0.883 0.010 0.107

31 0.301 0.107 0.592 64 0.883 0.107 0.010

32 0.301 0.204 0.495 65 0.980 0.010 0.010

Table S3: Fine resolution sweep of the initial volume fraction of the film. The initial bath
concentration was always set to: φp = 0.01, φn = 0.98 and φs = 0.01.
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Run no. φp φn φs Run no. φp φn φs

0 0.010 0.010 0.980 116 0.301 0.253 0.446

1 0.010 0.059 0.931 117 0.301 0.301 0.398

2 0.010 0.107 0.883 118 0.301 0.350 0.349

3 0.010 0.156 0.835 119 0.301 0.398 0.301

4 0.010 0.204 0.786 120 0.301 0.447 0.252

5 0.010 0.253 0.738 121 0.301 0.495 0.204

6 0.010 0.301 0.689 122 0.301 0.543 0.155

7 0.010 0.350 0.640 123 0.301 0.592 0.107

8 0.010 0.398 0.592 124 0.301 0.641 0.058

9 0.010 0.447 0.543 125 0.301 0.689 0.010

10 0.010 0.495 0.495 126 0.350 0.010 0.640

11 0.010 0.543 0.447 127 0.350 0.059 0.592

12 0.010 0.592 0.398 128 0.350 0.107 0.543

13 0.010 0.641 0.349 129 0.350 0.156 0.495

14 0.010 0.689 0.301 130 0.350 0.204 0.446

15 0.010 0.738 0.252 131 0.350 0.253 0.398

16 0.010 0.786 0.204 132 0.350 0.301 0.349

17 0.010 0.835 0.155 133 0.350 0.350 0.301

18 0.010 0.883 0.107 134 0.350 0.398 0.252

19 0.010 0.931 0.058 135 0.350 0.447 0.204

20 0.010 0.980 0.010 136 0.350 0.495 0.155

21 0.059 0.010 0.931 137 0.350 0.543 0.107

22 0.059 0.059 0.883 138 0.350 0.592 0.058

23 0.059 0.107 0.835 139 0.350 0.641 0.010

24 0.059 0.156 0.786 140 0.398 0.010 0.592
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25 0.059 0.204 0.738 141 0.398 0.059 0.543

26 0.059 0.253 0.689 142 0.398 0.107 0.495

27 0.059 0.301 0.640 143 0.398 0.156 0.446

28 0.059 0.350 0.592 144 0.398 0.204 0.398

29 0.059 0.398 0.543 145 0.398 0.253 0.349

30 0.059 0.447 0.495 146 0.398 0.301 0.301

31 0.059 0.495 0.447 147 0.398 0.350 0.252

32 0.059 0.543 0.398 148 0.398 0.398 0.204

33 0.059 0.592 0.349 149 0.398 0.447 0.155

34 0.059 0.641 0.301 150 0.398 0.495 0.107

35 0.059 0.689 0.252 151 0.398 0.543 0.058

36 0.059 0.738 0.204 152 0.398 0.592 0.010

37 0.059 0.786 0.155 153 0.447 0.010 0.543

38 0.059 0.835 0.107 154 0.447 0.059 0.495

39 0.059 0.883 0.058 155 0.447 0.107 0.447

40 0.059 0.931 0.010 156 0.447 0.156 0.398

41 0.107 0.010 0.883 157 0.447 0.204 0.349

42 0.107 0.059 0.835 158 0.447 0.253 0.301

43 0.107 0.107 0.786 159 0.447 0.301 0.252

44 0.107 0.156 0.738 160 0.447 0.350 0.204

45 0.107 0.204 0.689 161 0.447 0.398 0.155

46 0.107 0.253 0.641 162 0.447 0.447 0.107

47 0.107 0.301 0.592 163 0.447 0.495 0.058

48 0.107 0.350 0.543 164 0.447 0.543 0.010

49 0.107 0.398 0.495 165 0.495 0.010 0.495

50 0.107 0.447 0.447 166 0.495 0.059 0.447

51 0.107 0.495 0.398 167 0.495 0.107 0.398
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52 0.107 0.543 0.350 168 0.495 0.156 0.349

53 0.107 0.592 0.301 169 0.495 0.204 0.301

54 0.107 0.641 0.252 170 0.495 0.253 0.253

55 0.107 0.689 0.204 171 0.495 0.301 0.204

56 0.107 0.738 0.155 172 0.495 0.350 0.155

57 0.107 0.786 0.107 173 0.495 0.398 0.107

58 0.107 0.835 0.058 174 0.495 0.447 0.058

59 0.107 0.883 0.010 175 0.495 0.495 0.010

60 0.156 0.010 0.835 176 0.543 0.010 0.447

61 0.156 0.059 0.786 177 0.543 0.059 0.398

62 0.156 0.107 0.738 178 0.543 0.107 0.350

63 0.156 0.156 0.689 179 0.543 0.156 0.301

64 0.156 0.204 0.641 180 0.543 0.204 0.253

65 0.156 0.253 0.592 181 0.543 0.253 0.204

66 0.156 0.301 0.543 182 0.543 0.301 0.155

67 0.156 0.350 0.495 183 0.543 0.350 0.107

68 0.156 0.398 0.447 184 0.543 0.398 0.058

69 0.156 0.447 0.398 185 0.543 0.447 0.010

70 0.156 0.495 0.350 186 0.592 0.010 0.398

71 0.156 0.543 0.301 187 0.592 0.059 0.349

72 0.156 0.592 0.252 188 0.592 0.107 0.301

73 0.156 0.641 0.204 189 0.592 0.156 0.252

74 0.156 0.689 0.155 190 0.592 0.204 0.204

75 0.156 0.738 0.107 191 0.592 0.253 0.155

76 0.156 0.786 0.058 192 0.592 0.301 0.107

77 0.156 0.835 0.010 193 0.592 0.350 0.058

78 0.204 0.010 0.786 194 0.592 0.398 0.010
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79 0.204 0.059 0.738 195 0.641 0.010 0.349

80 0.204 0.107 0.689 196 0.641 0.059 0.301

81 0.204 0.156 0.641 197 0.641 0.107 0.252

82 0.204 0.204 0.592 198 0.641 0.156 0.204

83 0.204 0.253 0.544 199 0.641 0.204 0.155

84 0.204 0.301 0.495 200 0.641 0.253 0.107

85 0.204 0.350 0.447 201 0.641 0.301 0.058

86 0.204 0.398 0.398 202 0.641 0.350 0.010

87 0.204 0.447 0.350 203 0.689 0.010 0.301

88 0.204 0.495 0.301 204 0.689 0.059 0.252

89 0.204 0.543 0.253 205 0.689 0.107 0.204

90 0.204 0.592 0.204 206 0.689 0.156 0.155

91 0.204 0.641 0.155 207 0.689 0.204 0.107

92 0.204 0.689 0.107 208 0.689 0.253 0.058

93 0.204 0.738 0.058 209 0.689 0.301 0.010

94 0.204 0.786 0.010 210 0.738 0.010 0.252

95 0.253 0.010 0.738 211 0.738 0.059 0.204

96 0.253 0.059 0.689 212 0.738 0.107 0.155

97 0.253 0.107 0.641 213 0.738 0.156 0.107

98 0.253 0.156 0.592 214 0.738 0.204 0.058

99 0.253 0.204 0.544 215 0.738 0.253 0.010

100 0.253 0.253 0.495 216 0.786 0.010 0.204

101 0.253 0.301 0.447 217 0.786 0.059 0.155

102 0.253 0.350 0.398 218 0.786 0.107 0.107

103 0.253 0.398 0.350 219 0.786 0.156 0.058

104 0.253 0.447 0.301 220 0.786 0.204 0.010

105 0.253 0.495 0.253 221 0.835 0.010 0.155
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106 0.253 0.543 0.204 222 0.835 0.059 0.107

107 0.253 0.592 0.155 223 0.835 0.107 0.058

108 0.253 0.641 0.107 224 0.835 0.156 0.010

109 0.253 0.689 0.058 225 0.883 0.010 0.107

110 0.253 0.738 0.010 226 0.883 0.059 0.058

111 0.301 0.010 0.689 227 0.883 0.107 0.010

112 0.301 0.059 0.640 228 0.931 0.010 0.059

113 0.301 0.107 0.592 229 0.931 0.059 0.010

114 0.301 0.156 0.543 230 0.980 0.010 0.010

115 0.301 0.204 0.495
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Figure S1: (a) A coarse sweep and (b) a fine sweep of the composition of the film initial
condition.

Parameter Studies of the Early-Time Regimes

One can gain additional insight into the kinetic regimes by examining the effects of model

parameters. Accordingly, Figure S2 categorizes the early-time kinetic regimes of several

different data sets by their initial condition by systematically varying Np, χpn and χns. Note
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that these parameters affect both the phase diagram as well as kinetics parameters, such as

the mutual diffusion coefficient.S1 We will briefly examine the effect of each parameter in

turn.

Figure S2(a), S2(c) and S2(d) show results from three data sets where the solvent/nonsolvent

interaction parameter, χns, varies from 0 to 1.2, at constant Np and χnp. The phase diagram

in these cases shifts only slightly, and one observes little change in the location of regimes

I and II with changing χns. These observations agree with our earlier conclusion that the

local concentration of the interface plays a dominant role in distinguishing between regimes

I and II/III. By contrast, regime III is quite sensitive to the change in the interaction param-

eter, and shrinks considerably as χns increases. We hypothesize that a change in the rate of

solvent/nonsolvent exchange is the primary cause. Increasing χns decreases the nonsolvent

diffusion relative to polymer diffusion and leads to a smaller “tail” on the film side of the

composition path, which in turn gives a smaller region for regime III.

Figure S2(b), S2(d) and S2(e) show data sets where the polymer degree of polymerization,

Np, varies from 10 to 50, χns = 0 and χnp is held at a constant ratio to its binary critical value.

In this case, the phase diagram narrows, and shifts towards smaller polymer concentrations

as Np increases. The change in the boundary between regime I and regimes II/III is again

modest, with a small increase in the region of the composition space taken by II and III as

Np increases. The most notable difference however, is the shift of regime III to the right,

which mirrors the movement of the spinodal region as the phase diagram shifts. This shift

is again consistent with our observation that the tail of the composition path due to the

polymer film must cross into the spinodal for regime III to occur.

Figure S2(d), S2(f) and S2(g) show data where Np and χns are held constant, while χnp

varies from 1.2χc to 1.6χc where

χc =
1

2

(
1

N
1/2
n

+
1

N
1/2
p

)2

(77)
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Figure S2: Characterization of the early-time kinetic regime by initial condition for the
seven different sets of parameters labeled in the figure. Note that: panel (d) is the base
case, χns varies in the upper left panels (a, c, d), Np varies in the upper right panels (b,
d, e) and χpn varies in the bottom panels (d, f, g). Conditions which lead to regime I (no
phase separation) appear as red dots, regime II (phase separation) appear as green dots and
regime III (immediate spinodal decomposition) appear as blue dots.
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is the critical Flory Huggins parameter for a binary mixture of polymer and nonsolvent.

As χnp increases, the quench deepens and the two-phase region expands to cover a larger

amount of the composition space. Concomitantly, the size of regimes II and III also increase,

and by χnp = 1.6χc, there is only a small region of regime I remaining.

Time Invariance When Films Precipitate

In the main text, we claim that at late times, the system dynamics can be characterized by

two dimensionless numbers, ξ and tD0/l
2
f . We use Figure 8 as evidence for this claim, since

both real space and composition space curves collapse when scaled appropriately. Figure S3

provides further evidence, showing a similar calculation (parameters Np = 20, χpn = 1.048,

κ = 2) chosen at a different initial condition: {φf
p, φ

f
n} = {0.204, 0.301} and {φb

p, φ
b
n} =

{0.01, 0.98}.

Unlike the figure in the main text, at this initial condition, the system undergoes spinodal

decomposition at long times (i.e. late time regime III). Even so, one still observes from

the figure that when the length and time are appropriately scaled, the diffusive transport

remains identical. Notably, in the inset in Figure S3(b) there is not an exact correspondance

in the domain location following surface directed spinodal decompostion. This is to be

expected since the phase separation kinetics add additional time and length scales, and are

also dependent on the stochastic nature of the initial condition.
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Figure S3: Comparison of the long time diffusion dynamics between two differnet film thick-
nesses in (a) composition space and (b) real space. The solid curves show a film thickess of
lf = 102.4 at time points (i) 10, (ii) 500, (iii) 2× 103, and (iv) 5× 103 (in units of the Rouse
time). The closed circles show a film thickness of lf = 51.2 at time points (i) 2.5, (ii) 125,
(iii) 500, and (iv) 1.25× 103 The inset depicts a zoomed-in portion of the real space volume
fraction profile curve (iii).
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