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Supplementary Figures

Supplementary Figure 1: Platelet submitted to a rotating magnetic field: A) View orthogonal 

to the plane of the rotating magnetic field. B) View onto the plane of the field. 

Supplementary Figure 2: A,B) Experimental values of the interplatelet distances for the 

particles of aspect ratio 30.

1

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2019

mailto:*f.bouville@imperial.ac.uk
mailto:*andre.studart@mat.ethz.ch


Supplementary Figure 3: Alignment time  as a function of  . The lines correspond to a 𝜏
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𝐻2
0

linear fit of equation 1 (main text) to the experimental data. The slopes of each line correspond 

to the constant C1 and are equal to 6200, 5949 and 8117  for the transitions H->V, ∙ 10 ‒ 4 𝑠.𝑚𝑇2

V->H and V->V, respectively.

Supplementary Figure 4: Angle distribution of the platelet orientation in a vertically aligned 

sample containing 25 vol% of platelets. The Full Width at Half Maximum (FWHM) represents 

the degree of misalignment of the vertical platelets.

Supplementary Figure 5: Snapshots of suspensions containing 25 vol% platelets in 5 wt% 

PVP aqueous solution and subjected to a magnetic field strength H0 = 165 mT rotating at 1 Hz. 

Image series (a-c) show the colour change with time for distinct alignment scenarios.
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Supplementary text

Physical forces and torques relevant for the MASC process

Gravitational, viscous and magnetic torques

Assuming an isolated platelet suspended in a continuous fluid medium, the 

gravitational, magnetic and viscous torques exerted at the edge of the platelet under and 

external magnetic field can be expressed as 21:

, (Eq. S1) 𝑇𝑔 = 2𝜋𝜌𝑎𝑏3𝑔𝑐𝑜𝑠𝜙𝑝

              (Eq. S2)
𝑇𝑚 =

2𝜋𝜇0𝜒 2
𝑝𝑠

3(𝜒𝑝𝑠 + 1)
[(𝑎 + 𝑑)(𝑏 + 𝑑)2 ‒ 𝑎𝑏2]𝐻2

0(𝑡)𝑠𝑖𝑛(2𝜃)

and

(Eq. S3)
𝑇𝑣 =‒ 6𝜂𝑉( 𝑓

𝑓0
)(𝑑𝑝 

𝑑𝑡 )
where  is the density mismatch between the platelets and the surrounding fluid, p is the angle 

between the platelet’s long axis and the substrate,  ,  the angle of the magnetic 𝜃 = 𝑚 ‒  𝑝 𝑚

alignment direction and the substrate, g is the gravitational constant,  is the viscosity of the 

surrounding Newtonian fluid, V is the volume of the platelet given by , a and b are 𝑉 = 2𝜋𝑎𝑏2

half the thickness and half the diameter of the platelet, respectively; d is the thickness of the 

magnetic shell coating the platelets, f/f0 is the Perrin friction factor given by

 

𝑓
𝑓0

=
4(1 ‒ 𝑝2)

3(2 ‒ 𝑝2𝑎𝑆)
p is the aspect ratio of the platelets (b/a),

,
𝑆 = (2

𝑎)(𝑝2 ‒ 1) ‒ 1 2𝑡𝑎𝑛 ‒ 1[(𝑝2 ‒ 1)1 2]

μ0 is the magnetic permeability of free space, and χps is the magnetic susceptibility of the particle 

shell (Table 1).

Table 1: Input data used to calculate the torques 

a 1.5 ∙ 10 ‒ 7 m

b 5 ∙ 10 ‒ 6 m

d 1.2 ∙ 10 ‒ 8 m

H0 3.99 ∙ 106 A/m

𝜒𝑝𝑠 1.33 (Ref 13) -
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𝜇0 1.26 ∙ 10 ‒ 6 Kg.m.s-2

g 10 m.s-2

𝜌 2200 Kg.m-3

𝜂 1.83 ∙ 10 ‒ 2 Kg.m-1s-2

𝑓
𝑓0

16.5 -

Hydrodynamic torque

For a platelet positioned close to the wall of the mould, local fluid flow induces a drag 

force and an associated hydrodynamic torque, Th. The hydrodynamic torque depends on the 

local shear rate and can induce orbital motion of the platelets, known as Jeffery orbits29,30. The 

local shear rate depends on the volumetric flow rate, Q. The flow rate close to the wall 

decreases with the increase in deposit layer thickness due to the resistance of the newly formed 

jammed layer against flow into the mould.31 This correlation can be expressed by19,39 :

(Eq. S4)
|𝑄(𝑡)| = |�̇�| =

𝑆
𝐽|𝑑𝑥

𝑑𝑡|
where S is the surface area of the substrate, x is the thickness of the deposit layer and J is the 

ratio between the volume of the deposited layer and the volume of extracted liquid. Taking  𝜐𝑖

as the volume fraction of particles in the initial suspension and  as the volume fraction of 𝜐𝑑

particles in the deposited layer, the J value is given by: .
𝐽 =

𝜐𝑖

𝜐𝑑 ‒ 𝜐𝑖

To estimate the hydrodynamic torque, we consider the cylindrical geometry of our 

mould, which is comprised of a vertical plastic tube glued on top of a gypsum substrate. For 

this geometry and similar suspensions to the ones used in this study, we have previously 

observed that the growth of the deposit as a function of time can be described by the relation15: 

  (Eq. S5)𝑥(𝑡) = 𝛼 𝑡

where  is a constant that depends on the particle concentration, the hydrostatic resistance , 𝛼 𝛿

the capillary pressure   at the pores of the mold and the fluid viscosity as follows:Δ𝑝

𝛼 =
2𝐽Δ𝑝

𝜂𝛿

Introducing Eq. S5 into Eq. S4 we obtain:

(Eq. S6)
|𝑄(𝑡)| =

𝜋𝑅2

𝐽
|�̇�| =

𝜋𝑅2

2𝐽
𝛼
𝑡

=
𝜋𝑅2

2𝐽
𝛼2

𝑥

where R is the diameter of the cylindrical casting tube.

Assuming a shear rate profile generated by flow in a pipe of circular cross-section, the 

maximum hydrodynamic torque experienced by the platelets is given by29,30
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  (Eq. S7)
𝑇ℎ =

8𝜋𝐿3 𝑓
𝑓0

3ln (2𝑠)
𝜂

16

𝜋𝑅4
𝑄

where L=2b is the platelet long-axis length. This relation applies to isolated platelets in a shear 

gradient and thus neglects inter-particle interactions.

Although we have no experimental evidence that pipe flow conditions are valid for our 

casting geometry, we use equation S7 to obtain an order of magnitude estimate of the 

hydrodynamic torques that could potentially develop in our process.

To this end, equations S7 and S6 are combined to obtain the maximum hydrodynamic 

torque experienced by the platelets as a function of the thickness x of the deposit:

(Eq. S8)
𝑇ℎ =

8𝜋𝐿3 𝑓
𝑓0

3ln (2𝑠)
𝜂

16

𝜋𝑅4

𝜋𝑅2

2𝐽
𝛼2

𝑥
=

8𝜋𝐿3 𝑓
𝑓0

3ln (2𝑠)
𝜂

8

𝐽𝑅2

𝛼2

𝑥

This theoretical expression shows that the hydrodynamic drag torque scales with the 

inverse of the deposit layer thickness. We estimate the magnitude of this torque using  = 0.534 𝛼

mm.s-0.5 determined in our earlier work on similar suspensions of platelets.15 R and J values of 

5 mm and 1.25 were also used in the calculation based on the dimensions of the casting 

cylinder and on experimentally measured values of  and , respectively. Our analysis 𝜐𝑖 𝜐𝑑

indicates that the hydrodynamic torque dominates the platelet orientation in the region close to 

the surface of the substrate but becomes negligible above a critical deposit thickness (Figure 
5, main text).39 This is likely the reason for the observed horizontal orientation of platelets only 

close to the surface of the gypsum substrate.

Capillary torque

Drying of the deposit layer generates a capillary torque on the platelets due to the 

formation of a liquid meniscus. Such torque is directed towards the mould’s surface and can be 

quantified by estimating the Laplace pressure associated with the meniscus. The level of 

capillary torque generated depends whether the system is modelled as an isolated meniscus 

bridge between two vertical particles or as vertical particles partially immersed in the liquid. 

Analytical expressions for these two possible scenarios have been proposed for vertical rods. 
29,30 As an approximation for the torque level expected on our platelets, we use these 

expressions taking a rod diameter equivalent to the thickness (short-axis size) of our platelets.

For two vertical rods separated by a distance d and connected through an isolated 

meniscus bridge, the Laplace pressure  and resulting torque  that drives the rod from a ∆𝑃 �⃗�𝑐𝑎𝑝

vertical to a horizontal orientation is given by:32,33

= , (Eq. S9)𝑇𝑐𝑎𝑝

𝜋𝛾𝐿3

2 𝑑2 ‒ 𝐿2
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where  is the surface tension of the liquid-air interface, d is the inter-particle distance as 𝛾

depicted in Fig. 1C, L is the particle height and  the angle of the meniscus on the particle 𝛽

surface.

In the partially immersed conditions, the bending torque resulting from the capillary 

forces is given by:32,33

= .                                                                                                                        (Eq. S10) 𝑇𝑐𝑎𝑝

𝛾𝐿3

𝑑 ‒ 𝐿

Experimental measurements of interparticle distances in a dried structure 

(Supplementary Figure 2) show that d varies between 12 µm and 100 nm, depending on the 

volume fraction of particles in the initial suspension. Taking the surface tension of water ( = 

0.073 N/m) and the size of the platelets (L = 8.9 µm), these d values can be used to estimate 

the range of capillary torques expected during drying. The torque calculated using the isolated 

meniscus bridge assumption (Eq. S9) ranges from  to  N.mm, whereas the 5.8 ∙ 10 ‒ 9 1.7 ∙ 10 ‒ 8

lateral capillary forces arising in the partially immersed configuration (Eq. S10) give torques up 

to  N.mm. These torque levels are 4 to 5 orders of magnitude higher than the torque 1 ∙ 10 ‒ 11

of  N.mm expected form gravity. Thus, our analysis indicates that the capillary torque 3.8 ∙ 10 ‒ 15

applied by the moving air–water interface dictates the motion of the particles during drying and 

should be counteracted by opposing steric interactions to maintain the platelets in the 

orientation initially imposed by the external magnetic field.

Free volume and hydrodynamic volume of platelets

To ensure that platelets establish steric interactions that counteract capillary forces, the 

free volume in which the particle can rotate needs to be smaller than the hydrodynamics radius 

of the platelets ( ). By definition, the hydrodynamic radius is the equivalent radius within which 𝑅ℎ

an individual particle is free to rotate. In terms of particle volume, the following condition needs 

therefore to be fulfilled to prevent the undesired effect of capillary forces during drying:

  (Eq. S11)𝑉𝑓𝑟𝑒𝑒 < 𝑉ℎ𝑦𝑑𝑟𝑜

where . (Eq. S12)
𝑉ℎ𝑦𝑑𝑟𝑜 =

4
3

𝜋𝑅3
ℎ

The hydrodynamic radius (Rh) of a particle with long- and short-axis dimensions L and 

l, respectively, is given by:34

 . (Eq. S13)

𝑅ℎ =
3𝐿
4

1

1 + ( 𝑙
𝐿)2 +

𝐿
𝑙
ln ( 𝑙

𝐿
+ 1 + ( 𝑙

𝐿)2) ‒
𝑙
𝐿

The free volume of a particle ( ) expressed as the average volume available for a 𝑉𝑓𝑟𝑒𝑒

single particle to move in the suspension without interparticle steric interactions can be written 

as a function of the volume fraction of particles in suspension ( ) as:𝜈
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            (Eq. S14)
𝑉𝑓𝑟𝑒𝑒 =

𝑉𝑝

𝜈

with  as the volume of a disc-shape platelet.
𝑉𝑝 =

𝜋
4

∙ 𝐿2 ∙ 𝑙

Thus, the dependence of the particle free volume on the particle geometry and on the 

volume fraction of the suspension can be expressed by the relation:

(Eq. S15)
𝑉𝑓𝑟𝑒𝑒 =

𝜋 ∙ 𝐿2 ∙ 𝑙
4 𝜈

Therefore, the volume fraction above which steric interactions are expected to occur (

) can be estimated taking the critical condition: . This leads to:𝜈𝑚𝑖𝑛 𝑉𝑓𝑟𝑒𝑒 = 𝑉ℎ𝑦𝑑𝑟𝑜

. (Eq. S16)
𝜈𝑚𝑖𝑛 =

3
16

𝐿2 ∙ 𝑙

𝑅3
ℎ

Using this equation, we find that   for the platelet dimensions used in 𝜈𝑚𝑖𝑛 = 16.8 𝑣𝑜𝑙%

this study.

Liquid crystalline domains

Our analysis of the minimum volume fraction ( ) above which steric interactions are 𝜈𝑚𝑖𝑛

expected is based on similar arguments put forward to explain the assembly of anisotropic 

particles into liquid crystalline domains. According to Onsager’s theory,23,24 packing entropic 

effects arising from a reduction in free particle volume are expected to occur when nL3 ~ 6.8, 

where n is the number density of platelets and L the longest dimension of the particle. At this 

condition, nematic and isotropic phases are predicted to coexist. From this relation, the volume 

fraction ( ) at which colloidal particles of the same aspect ratio start to form liquid crystalline 𝜈𝐼 ‒ 𝑁

nematic phases is given by:

  (Eq. S17)

𝜈𝐼 ‒ 𝑁 =
𝜋𝑛𝐿3

4
𝐿
𝑙

Applying this equation to our particles, we find that . This value is very 𝜈𝐼 ‒ 𝑁 = 17 %

close to the minimum volume fraction of particles (  = 16.8 vol%) predicted above from 𝜈𝑚𝑖𝑛

particle free volume calculations. Considering that the polydispersity of our particles should 

broaden the volume fraction range where nematic and isotropic phases coexist,32,33 these 

estimates are in good agreement with the lower limit of the optimum particle concentration 

window for the MASC process (  = 20 vol%).𝜈

Apparent viscosity of suspensions

The dependence of the suspension viscosity on the volume fraction of platelets can be 

described by the Krieger–Dougherty relation37:
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(Eq. S18)
𝜂𝑟 =

𝜂
𝜂𝑙𝑖𝑞

= (1 ‒
𝜈

𝑣𝑚
)

‒ 𝐵𝑣𝑚

where  is the relative viscosity, defined as the ratio between the viscosity of the suspension 𝜂𝑟

and the viscosity of the background liquid,  is the volume fraction of particles,  is the 𝑣 𝜈𝑚

maximum volume fraction of particles and B is the Einstein coefficient37. For the platelets 

considered here, a  value of 40 vol% and a B value of 2 were experimentally obtained by 𝑣𝑚

fitting this relation to the measured suspension viscosity (Figure 2d).

Suspension reflectance as a function of platelet orientation

The normalized intensity of light reflected from the suspension (I) changes with the 

platelet’s angle () as expected from Fresnel’s law. For specular reflections, the face of a 

platelet reflects the light in a mirror-like manner, such that:

(Eq. S19)𝐼(𝜓) = 𝑎0 + 𝑎1cos (𝑤𝜓) + 𝑎2𝑠𝑖𝑛⁡(𝑤𝜓)

where , , , and  are experimental constants. Experimental data points fitted with this 𝑎0 𝑎1 𝑎2  𝑤

equation (Figure 3a) showed a correlation coefficient of R2 = 0.95.

Time required for platelet alignment

The time ta required for the alignment of an individual platelet subjected to a rotating 

magnetic field H in a Newtonian fluid can be theoretically estimated by performing a torque 

balance at the edge of the platelet, as previously suggested in the literature.20,21,38 For an 

applied frequency  >c, the platelets are not able to rotate with the imposed magnetic field 

and will thus biaxially align within the plane of the rotating field after an elapsed time ta. In this 

work, we imposed the condition  >c by applying a rotating frequency higher than the critical 

frequency as described by Erb et al.20,21 As a result, our platelets behave in phase-ejected 

mode, as opposed to the phase-locked mode modelled in previous studies.20,21

Alignment of a phase-ejected platelet within the plane of the rotating magnetic field will 

still be driven by the magnetic torque Tm, which is counteracted by the viscous torque Tv. 

Assuming the viscosity of the fluid around a platelet to be high enough to dampen the rotation, 

the following force balance applies: Tm = Tv.

The magnetic torque Tm depends on the platelet orientation (Eq. S2), but also on the 

elasped time due to the rotation of the applied magnetic field (Supplementary Figure 1). To 

simplify the analysis we use an averaged torque, , in the force balance. This averaged torque �̅�𝑚

is obtained by replacing the actual magnetic field in Eq. S2 by the orientation- and time-

averaged fields  and : �̅�0,𝑡 �̅�0,𝜃

(Eq. 
�̅�0,𝑡 = �̅�0,𝜃 =

2𝐻0

𝜋

S20)
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We note that this averaging procedure is a refinement of previous estimates of the 

alignment time of platelets under phase-ejection mode.38 

Introducing Eq. S20 in Eq. S2:

              (Eq. 
�̅�𝑚 =

16𝜇0𝜒 2
𝑝𝑠

32(𝜒𝑝𝑠 + 1)
[(𝑎 + 𝑑)(𝑏 + 𝑑)2 ‒ 𝑎𝑏2]𝐻2

0

S21)

Balancing the absolute values of the magnetic and viscous torques described in 

equations S3 and S21, we obtain the following relation:

, (Eq. S22)
𝑑𝑡 =

𝐶2

𝐻2
0

𝑑𝜃

where 
𝐶2 =

92𝜂𝑉(𝑓 𝑓0)(𝜒𝑝𝑠 + 1)
8𝜇0𝜒 2

𝑝𝑠[(𝑎 + 𝑑)(𝑏 + 𝑑)2 ‒ 𝑎𝑏2]

Integrating Eq. S22 on both sides for the intervals 0 < t < ta and 0 >  > /2, we arrive 

at:

, (Eq. S23)
𝑡𝑎 =

𝐶1

𝐻2
0

where .
𝐶1 =

9𝜋3𝜂𝑉(𝑓 𝑓0)(𝜒𝑝𝑠 + 1)
16𝜇0𝜒 2

𝑝𝑠[(𝑎 + 𝑑)(𝑏 + 𝑑)2 ‒ 𝑎𝑏2]
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