Electronic Supplementary Information (ESI)

for

Temperature-responsive self-assembled nanostructures from lysinebased surfactants with high chain length asymmetry: from tubules and helical ribbons to micelles and vesicles

Isabel S. Oliveira, Mikail Lo, Maria J. Araújo, Eduardo F. Marques*

Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, nº 687, P-4169-007 Porto, Portugal *efmarque@fc.up.pt.

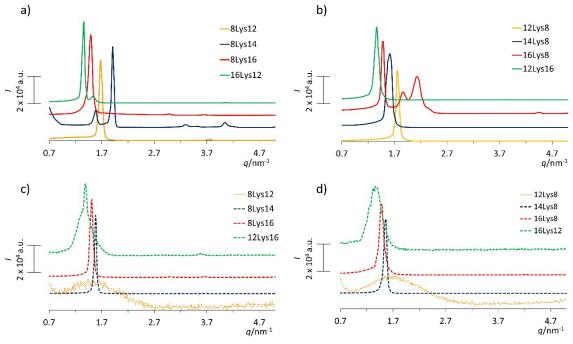
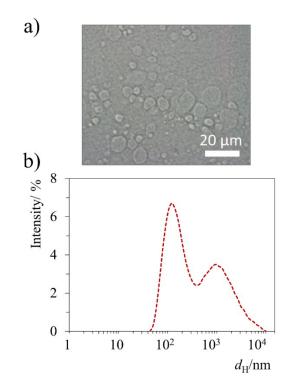

1. Thermodynamic parameters of phase transitions

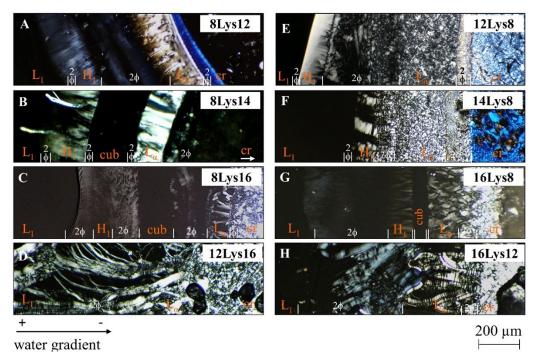
Table S1. Thermodynamic parameters associated with the phase transitions of the 8Lysn and mLys8 lysine-derived surfactants in water, as obtained from de DSC scans.

Surfactant	𝒯m,onset/℃		T _m /°C		∆ _{tr} <i>H</i> m/kJ·mol ⁻¹		Δ _{tr} S _m /J·K ⁻¹ ·mol ⁻¹	
	1 st heating	reheating	1 st heating	reheating	1 st heating	reheating	1 st heating	reheating
8Lys12	14.6 ± 1.0		17.2 ± 0.8		0.5 ± 0.3		1.8 ± 0.9	
8Lys14	23.1 ± 0.2	20.9 ± 0.6	30.7 ± 0.6	30.2 ± 0.4	54.2 ± 1.1	42.0 ± 0.9	178.4 ± 3.7	138.1 ± 2.8
8Lys16	33.5 ± 1.3	23.9 ± 0.2	$\textbf{36.0}\pm\textbf{0.9}$	30.4 ± 0.4	60.6 ± 3.0	51.4 ± 1.2	186 ± 19	$\textbf{169.4} \pm \textbf{4.1}$
12Lys8	$\textbf{27.7}\pm\textbf{0.1}$		28.8 ± 0.1		10.3 ± 1.3		$\textbf{32.3} \pm \textbf{2.2}$	
14Lys8	31.7 ± 0.8	13.3 ± 0.6	35.6 ± 0.6	$\begin{array}{c} 18.6\pm1.9\\ 31.4\pm0.6\end{array}$	58.3 ± 1.1	50.9 ± 4.9	182.0 ± 8.6	175 ± 24
16Lys8	25.8 ± 0.4	$\textbf{30.8} \pm \textbf{2.0}$	$\textbf{37.5} \pm \textbf{1.1}$	$\textbf{30.8} \pm \textbf{2.0}$	$\textbf{62.6} \pm \textbf{3.2}$	53.3 ± 1.4	$\textbf{201} \pm \textbf{10}$	176.6 ± 4.6

Table S2. Thermodynamic parameters associated with the phase transitions of the 12Lys16 and 16Lys12 lysine-derived surfactants in water, as obtained from de DSC scans.


Surfactant	𝒯m,onset/°℃				T _m /°C		∆ _{tr} H _m /kJ·mol ⁻¹			Δ _{tr} S _m /J·K ⁻¹ ·mol ⁻¹		
	1 st heating	reheating	cooling	1 st heating	reheating	cooling	1 st heating	reheating	cooling	1 st heating	reheating	cooling
12Lys16	48.6 ± 0.7	36.5 ± 0.1	$26.1\!\pm2.5$	51.1 ± 0.6	$\begin{array}{c} 39.2 \pm 0.2 \\ 43.1 \pm 0.2 \end{array}$	$28.1\!\pm\!0.2$	63.4 ± 3.8	46.9 ± 6.2	$\textbf{-43.3} \pm \textbf{2.9}$	195.6 ± 12.0	159.3 ± 5.3	-143.2 ± 9.6
16Lys12	$49.8\!\pm0.1$	44.8 ± 0.3	27.0 ± 0.4	53.57 ± 0.07	46.8 ± 0.2	25.3 ± 0.1	$65.0\!\pm\!1.5$	55.0 ± 1.1	$\textbf{-54.1} \pm \textbf{2.8}$	$199.6\!\pm\!2.8$	171.8 ± 3.3	-180.4 ± 9.2

2. SAXS data


Fig. S1 Diffractograms obtained by SAXS for all surfactants studied: a) and b) powder; c) and d) tubule dispersions.

3. Tubule-vesicle transition

Fig. S2 Evidence for polydisperse vesicle formation for 16Lys12: a) light micrograph; b) mean size distribution obtained by DLS, both for 0.50 wt% dispersions.

4. Phase scanning data

Fig. S3. Phase scanning imaging of 8Lys12 (A), 8Lys14 (B), 8Lys16 (C), 12Lys8 (E), 14Lys8 (F), 16Lys8 (G), 12Lys16 (D), and 16Lys12 (H) at 25 °C (A, E), 40 °C (B, C, F, G) and 55 °C (D, H). The images were obtained under polarized light. Abbreviations: L α , lamellar liquid crystalline phase; L1, isotropic phase; H1, hexagonal phase; cub, isotropic cubic phase; cr, hydrated crystals.

Table S3 Summary of the phase sequence observed for the anionic lysine-based surfactants studied. The textures observed under polarized light are described under the respective assigned liquid-crystalline phase.

Surfactant	Phase Sequence							
8Lys12	$L_1 \rightarrow H_1 \rightarrow L_{\alpha} \rightarrow cr$ isotropic marble texture mosaic texture (liquid)							
8Lys14	$\begin{array}{cccc} L_1 & \to & H_1 & \to & cub & \to & L_\alpha & \to & cr \\ \textit{isotropic} & \textit{marble texture} & \textit{isotropic} & \textit{mosaic texture} \\ & & & & & & & & & & & & & & & & & & $							
8Lys16	$L_1 \rightarrow H_1 \rightarrow cub \rightarrow L_{\alpha} \rightarrow cr$ isotropic striated texture isotropic mosaic texture							
12Lys8	$L_1 \rightarrow H_1 \rightarrow L_{\alpha} \rightarrow cr$ isotropic granulated marble texture mosaic texture							
14Lys8	$L_1 \rightarrow H_1 \rightarrow L_{\alpha} \rightarrow cr$ isotropic marble texture mosaic texture							
16Lys8	$L_1 \rightarrow H_1 \rightarrow \text{cub} \rightarrow L_{\alpha} \rightarrow \text{cr}$ isotropic marble texture isotropic mosaic texture							
12Lys16	$L_1 \rightarrow L_{\alpha} \rightarrow cr$ isotropic oily-streaks							
16Lys12	$L_1 \rightarrow L_{\alpha} \rightarrow cr$ isotropic oily-streaks							