Supplemental Information - The Role of Stickiness in the Rheology of Semiflexible Polymers

Tom Golde, $^{1,\,2}$ Martin Glaser, $^{1,\,3}$ Cary Tutmarc, 1 Iman Elbalasy, 1

Constantin Huster,
4 Gaizka Busteros, 1 David M. Smith, $^{3,\,1}$

Harald Herrmann, $^{5,\,6}$ Josef A. Käs, 1 and Jörg Schnauß $^{1,\,3}$

¹Peter Debye Institute for Soft Matter Physics, University of Leipzig, 04103 Leipzig, Germany ²Institute for Bioengineering of Catalonia,

The Barcelona Institute for Science and Technology, 08028 Barcelona, Spain

³Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany

⁴Institute for Theoretical Physics, University of Leipzig, 04103 Leipzig, Germany

⁵Molecular Genetics, German Cancer Research Center, 69120 Heidelberg, Germany

⁶Department of Neuropathology, University Hospital Erlangen, 91054, Erlangen, Germany

SUPPLEMENTARY FIGURES

Figure S1. Histogram of the contour length L of F-actin (n = 136), vimentin IF (n = 153) and DX tubes (n = 345). Actin and vimentin data reproduced from [1].

Figure S2. Local power law exponent α , loss factor $\tan(\phi)$ at a frequency f = 1 Hz, and stretching parameter ε for F-actin, DX tubes, vimentin and keratin IF. Note that α and $\tan(\phi)$ are only approximations of the actual rheological properties. Differences of α and $\tan(\phi)$ are not significant for F-actin and DX tubes while both polymers behave significantly different to IF. ε combines both network properties and is significantly different for all four polymers. Each bar is the mean value of all samples with $n \geq 7$. Error bars are the standard deviation of the mean. Significance was tested with a Kolmogorow-Smirnow-test.

Figure S3. Loss factor $tan(\phi)$ versus frequency for F-actin (red), DX tubes (blue), vimentin (green) and keratin (yellow) IF. Each line is a single measurement. Data has been smoothed with a moving average for better visibility.

Figure S4. Interaction length Λ versus mesh size ξ . All values were obtained from fitting the complex shear modulus G^* of each sample to the GWLC.

Figure S5. Local power law exponent of $G' \propto \omega^{\alpha}$ (open symbols) and loss factor $\tan(\phi) = G''/G'$ (solid symbols) versus stretching parameter ε . Each pair of data points represents one sample. The exponent was obtained from fitting G' with a power law for frequencies smaller than the cross-over between G' and G''. The loss factor was obtained from fitting $\tan(\phi)$ locally with a power law at a frequency of 1 Hz. ε is the result from fitting the complex shear modulus G^* to Eq.(3) for each sample. Dashed lines are the numerical results of an exemplary G^*_{GWLC} where all parameters except ε are fixed to the mean values of the polymer.

Figure S6. Differential shear modulus K rescaled by its value in the linear regime K_{lin} versus strain. Solid lines are single measurements of F-actin (red), DX tubes (blue) vimentin (green) and keratin (yellow) IFs samples. Actin and vimentin data reproduced from [1].

Figure S7. MSD of the filament center parallel to the tube rescaled by tube width a versus lag time τ . Thin lines are single filaments. Thick lines are the median over all presented filaments. Actin and vimentin data reproduced from [1].

SUPPLEMENTARY TABLES

linear rheology:		
contour length actin	L	16 µm [1]
contour length DX tubes	L	$21\mu{ m m}$
contour length vimentin	L	18 µm [1]
contour length keratin	L	$18\mu{ m m}$
contour length GWLC example	L	$18\mu{ m m}$
persistence length actin	$l_{\rm p}$	9 µm [2]
persistence length DX tubes	$l_{\rm p}$	4 µm [3]
persistence length vimentin	$l_{\rm p}$	$2\mu{\rm m}[4,5]$
persistence length keratin	$l_{\rm p}$	$0.5\mu{ m m}[6,7]$
persistence length GWLC example	$l_{\rm p}$	$4\mu{ m m}$
mesh size GWLC example	ξ	$0.2\mu{ m m}$
interaction length GWLC example	Λ	$1\mu{ m m}$
drag coefficient per length	ζ_{\perp}	$2\mathrm{mPas}$
non-linear rheology:		
characteristic width of a free energy well actin	δ	$150\mathrm{nm}$
characteristic width of a free energy well DX tubes	δ	$2000\mathrm{nm}$
characteristic width of a free energy well vimentin	δ	$50\mathrm{nm}$
characteristic width of a free energy well keratin	δ	$50\mathrm{nm}$
energy difference between the bound and the unbound state		$2.5 \ k_{\rm B}T$
control parameter for filament lengthening	S	0.13
distance between bound and unbound state	Δx	$200\mathrm{nm}$

Table SI. Fixed parameters for the description of the linear rheology and adjusted parameters for reproducing the non-linear rheology.

Name	Sequence
SE1	CTCAGTGGACAGCCGTTCTGGAGCGTTGGACGAAACT
SE2	GTCTGGTAGAGCACCACTGAGAGGTA
SE3	CCAGAACGGCTGTGGCTAAACAGTAACCGAAGCACCAACGCT
SE3-Cy3	${\rm CCAGAACGGCTGTGGCTAAACAGTAACCGAAGCACCAACGCTTT-Cy3}$
SE4	CAGACAGTTTCGTGGTCATCGTACCT
SE5	CGATGACCTGCTTCGGTTACTGTTTAGCCTGCTCTAC

Table SII. Sequences of the DNA oligonucleotides.

SI TEXT

The glassy wormlike chain model

The specific GWLC used for this study has been comprehensively described previously [1, 8, 9]. In general, the GWLC is an extension of the wormlike chain (WLC) for semiflexible polymer networks that takes into account the interactions of a test chain with its environment by stretching the mode relaxation spectrum of the WLC exponentially. Starting with the mode relaxation times of all eigenmodes of (half-) wavelength $\lambda_n = L/n$ and mode number n for a WLC with persistence length l_p and the transverse drag coefficient ζ_{\perp} :

$$\tau_n^{\rm WLC} = \zeta_\perp / (l_{\rm p} k_{\rm B} T \pi^4 / \lambda_n^4 + f \pi^2 / \lambda_n^2), \tag{1}$$

the relaxation times of the GWLC are modified according to:

$$\tau_n^{\text{GWLC}} = \begin{cases} \tau_n^{\text{WLC}} & \text{if } \lambda_n \leq \Lambda \\ \tau_n^{\text{WLC}} e^{\varepsilon N_n} & \text{if } \lambda_n > \Lambda. \end{cases}$$
(2)

Here, $N_n = \lambda_n / \Lambda - 1$ is the number of interactions per length λ_n , L the contour length of the test filament, Λ the typical distance between two interactions, and f describes a homogeneous backbone tension accounting for existing pre-stress. ε is the stretching parameter controlling how strong the modes are slowed down by interactions with the environment. The complex linear shear modulus in the high frequency regime is then:

$$G^*(\omega) = \Lambda/(5\xi^2\chi(\omega)), \tag{3}$$

with the mesh size ξ . $\chi(\omega)$ is the micro-rheological, linear response function to a point force at the ends of the GWLC:

$$\chi(\omega) = \frac{L^4}{\pi^4 l_{\rm p}^2 k_{\rm B} T} \sum_{n=1}^{\infty} \frac{1}{(n^4 + n^2 f/f_{\rm E}) \left(1 + i\omega \tau_n^{\rm GWLC}/2\right)}.$$
(4)

Here, $f_{\rm E} = l_{\rm p} k_{\rm B} T \pi^2 / L^2$ is the Euler buckling force. f is set to zero for the linear regime.

In the non-linear regime, the differential shear modulus $K = d\sigma/d\gamma$ is approximated via Eq.(3) at a constant frequency as a function of the backbone tension f:

$$K(f) = |G_{\omega}^*|(f), \tag{5}$$

where f is related to the macroscopic stress σ via $f = 5\sigma\xi^2$. The effect of pre-stress on the stretching parameter is introduced via a linear barrier height reduction:

$$\varepsilon \to \varepsilon - f \delta / k_{\rm B} T,$$
 (6)

where δ should be interpreted as an effective width of a free energy well. The mean values of ξ , Λ and ε obtained from fitting the linear regime for each polymer type were used to replicate the measured curves. δ was used as the only free parameter to effectively shift the peak of K both in terms of σ and the maximum value K_{max} .

An important question is how the other parameters are related to bottom up physical properties. The contour length L, for example, is naturally a broad distribution instead of a single value (Fig. S1). Different shapes and widths of this distribution might influence the network properties in a way that cannot be captured by a single number.

The mesh size ξ is rather an effective concentration scaling than the actual distance between neighboring filaments, although it has the right order of magnitude. The pre-factor in Eq.(3) originates from a purely geometric definition of the mesh. A quantitative matching of ξ with rheological data has been proven to be difficult for both F-actin and IF [7, 10].

The interaction length Λ is the average contour length between two sticky interactions of a test polymer. Thus, it is considered as a smeared out version of the entanglement length L_e in the original paper by Kroy and Glaser [8] although the GWLC is fundamentally different to the picture of a coarse grained tube. A strict identification of both appears to be too simple and the physical nature of Λ is still a matter of debate. In the tube model, L_e has a simple scaling of the form $L_e \propto l_p^{1/5} \xi^{4/5}$ [11] while more advanced approaches lead to slightly different exponents [12]. As expected, we cannot observe a systematic scaling of Λ with either persistence length l_p or with mesh size ξ (Fig. S4). Its consistency for DX tubes and vimentin and keratin IF might contain some information about polymer specific interactions while the strong variation of Λ for F-actin is a direct consequence of the sample to sample variation of the cross-over frequency ω_{Λ} . The final interpretation of the interaction length Λ remains an important task for future investigations due to its strong influence on the transition between single polymer and interaction dominated network properties.

SUPPORTING REFERENCES

- T. Golde, C. Huster, M. Glaser, T. Händler, H. Herrmann, J. A. Käs, and J. Schnauß, Soft Matter 14, 7970 (2018).
- H. Isambert, P. Venier, A. C. Maggs, A. Fattoum, R. Kassab, D. Pantaloni, and M. F. Carlier, J. Biol. Chem. 270, 11437 (1995).
- [3] P. W. K. Rothemund, A. Ekani-Nkodo, N. Papadakis, A. Kumar, D. K. Fygenson, and E. Winfree, J. Am. Chem. Soc. 126, 16344 (2004).
- [4] N. Mücke, L. Kreplak, R. Kirmse, T. Wedig, H. Herrmann, U. Aebi, and J. Langowski, J. Mol. Biol. 335, 1241 (2004).
- [5] B. Nöding and S. Köster, Phys. Rev. Lett. **108**, 088101 (2012).
- [6] T. Lichtenstern, N. Mücke, U. Aebi, M. Mauermann, and H. Herrmann, J. Struct. Biol. Ueli Aebi Festschrift, 177, 54 (2012).
- [7] P. Pawelzyk, N. Mücke, H. Herrmann, and N. Willenbacher, PLoS ONE 9, e93194 (2014).
- [8] K. Kroy and J. Glaser, New J. Phys. 9, 416 (2007).
- [9] C. Semmrich, T. Storz, J. Glaser, R. Merkel, A. R. Bausch, and K. Kroy, PNAS 104, 20199 (2007).
- [10] D. C. Morse, Macromolecules **31**, 7044 (1998).
- [11] D. C. Morse, Phys. Rev. E 58, R1237 (1998).
- [12] D. C. Morse, Phys. Rev. E **63**, 031502 (2001).