Geometry and kinetics determine the microstructure in arrested coalescence of Pickering emulsion droplets

Zhaoyu Xie,¹ Christopher J. Burke,¹ Badel Mbanga,¹ Patrick T. Spicer,² and Timothy J. Atherton^{1, *}

¹Department of Physics and Astronomy, Tufts University, 574 Boston Avenue, Medford, MA 02155 ²Complex Fluids Group, School of Chemical Engineering, UNSW Sydney, Sydney, Australia

SUPPLEMENTARY MATERIAL

Figure S1. Total rate of area change dA/dT as a function of aspect ratio λ .

^{*} timothy.atherton@tufts.edu

Figure S2. Rate of change of the scale factors $h_{i,\lambda} \equiv \frac{dh_i}{d\lambda}$ as a function of surface aspect ratio λ and position along the rotational symmetry axis z/a. Rate along the z axis $h_{z,\lambda}$ is shown in (A, left) and (B, blue surface); corresponding plots for the azimuthal direction $h_{\phi,\lambda}$ are shown in (A, right) and (B, blue surface).

Figure S3. Pair correlation function g(s) as a function of arclength s over particle radius r for particles around neck (solid lines) and pole (dashed lines) on different shapes.

Figure S4. Defect number distribution along the rotational symmetry axis of the surface z/a for different stages of coalescence.

Figure S5. Movies (supplied as separate files) of evolution approaching arrest corresponding to Fig. E and F (early and late arrest respectively). Particles are colored by ψ_6 .