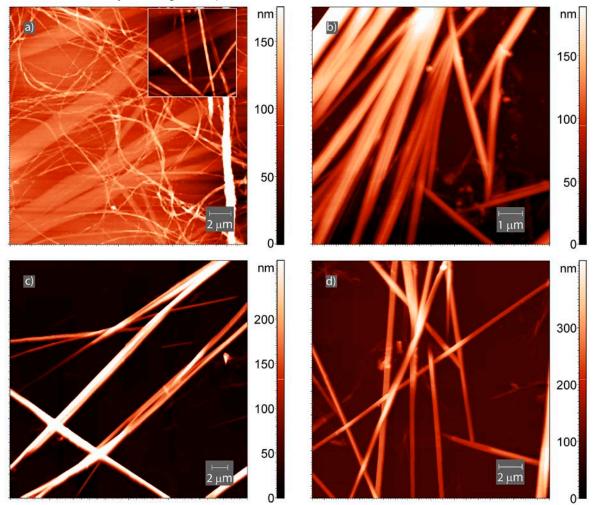
Electronic Supplementary Information

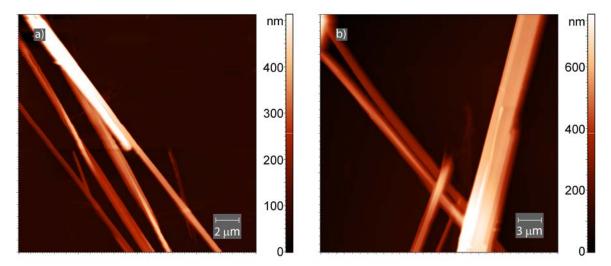
Role of water in the formation of unusual organogels with *cyclo*(leucyl-leucyl)

Aisylu S. Safiullina,^{*a*} Sufia A. Ziganshina,^{*b*} Nikolay M. Lyadov,^{*b*} Alexander E. Klimovitskii,^{*a*} Marat A. Ziganshin,^{*,*a*} Valery V. Gorbatchuk^{*a*}


^a A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya ul. 18, Kazan, 420008 Russia.

^b Zavoisky Physical-Technical Institute of FRC Kazan Scientific Center of the Russian Academy of Sciences, Sibirskii trakt 10/7, Kazan, 420029 Russia.

- AFM images of the surface of dried gel of *cyclo*(Leu-Leu) on the silicon substrate.


- Gelation ability and minimum gelation concentration of *cyclo*(Leu-Leu) in the systems studied.

- Data of DSC analysis for gel of cyclo(Leu-Leu) in benzene with water.

Fig. S1. AFM images of the surface of dried cyclo(Leu-Leu) gel (xerogel) in (a) benzene, (b) toluene (c) o-xylene and (d) ethylbenzene on the silicon substrate.

In organogel with toluene, fibers with a length of more than 20 μ m and width from 300 nm to 1.5 μ m are formed, Fig. S1 b. Such fibers have a complex structure and are bundles of smaller fibers about 150 nm wide. In the xerogel formed from *o*-xylene there are twisted fibers more than 30 μ m in length, which are consist from the individual fibers of 350 - 700 nm wide and 100 - 300 nm height, Fig. S1 c. The fibers of width from 500 nm to 1.2 μ m and height from 40 nm to 250 nm were formed in ethylbenzene, Fig. S1 d.

Fig. S2. AFM images of the surface of dried gel of *cyclo*(Leu-Leu) in (a) *o*-xylene (1.5 mg mL⁻¹, 20 μ L H₂O) and (b) ethylbenzene (2.5 mg mL⁻¹, 20 μ L H₂O) on the silicon substrate.

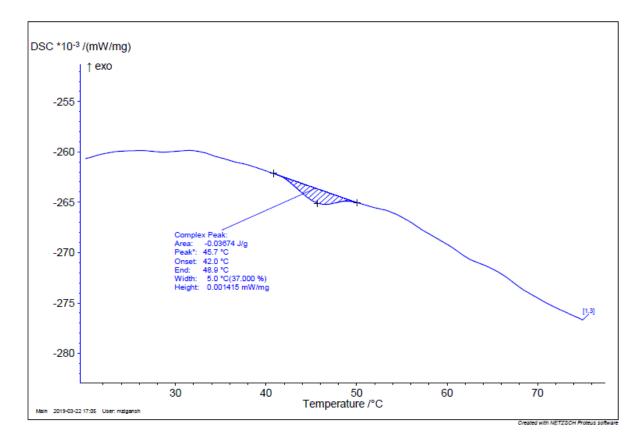


Fig. S3. Data of DSC analysis for gel of cyclo(Leu-Leu) in benzene with water.

Solvent	Concentration of $cyclo$ (Leu-Leu), mg mL ⁻¹						
	1.5	2	2.5	3	4	5	
Benzene	G^c	G^c	G^c	G^b	G^b	G^b	
Toluene	G^c	G^{c}	G^{c}	G^b	G^b	G^b	
o-Xylene	G^d	PG^{c}	\mathbf{G}^{c}	G^b	G^b	G^b	
<i>m</i> -Xylene	G^d	\mathbf{G}^{c}	\mathbf{G}^{c}	G^b	G^b	G^b	
<i>p</i> -Xylene	G^d	\mathbf{G}^{c}	\mathbf{G}^{c}	G^b	G^b	G^b	
Ethylbenzene	PG^{c}	PG^{c}	PG^{c}	\mathbf{G}^{c}	G^c	G^b	
sec-Amylbenzene	PG^{c}	PG^{c}	PG^{c}	PG^{c}	PG^{c}	PG^{c}	
<i>n</i> -Hexane	Ι	Ι	Ι	Ι	Ι	Ι	
<i>n</i> -Heptane	Ι	Ι	Ι	Ι	Ι	Ι	
Cyclohexane	Ι	Ι	Ι	Ι	Ι	Ι	
Tetrachloromethane	Ι	Ι	Ι	Ι	Ι	Ι	
Tetrachloroethylene	PG^{d}	\mathbf{PG}^{d}	\mathbf{PG}^{d}	\mathbf{G}^{c}	\mathbf{G}^{c}	\mathbf{G}^{c}	

Table S1. Gelation ability and concentration of *cyclo*(Leu-Leu) in the systems with 1 mL of solvent without shaking.^a

^a MGC is the minimum value of *cyclo*(Leu-Leu) concentration indicated by letters G or PG, where G – complete gelation, PG – partial gelation, I – insoluble; ^b after one day; ^c after two days; ^d after three days.

Table S2. Gelation ability and concentration of *cyclo*(Leu-Leu) in the systems with 0.5 mL of solvent without shaking.^a

Solvent	MGC, mg mL ⁻¹			
	1.5	2	2.5	
Benzene	G ^c	\mathbf{G}^{c}	\mathbf{G}^{d}	
Toluene	G ^c	\mathbf{G}^{d}	\mathbf{G}^{d}	
o-Xylene	\mathbf{G}^{d}	\mathbf{G}^d	\mathbf{G}^{c}	
<i>m</i> -Xylene	\mathbf{G}^{d}	G^b	G^b	
<i>p</i> -Xylene	G^b	\mathbf{G}^{b}	\mathbf{G}^{d}	
Ethylbenzene	G ^c	G^c	\mathbf{G}^{d}	
Tetrachloroethylene	PG^d	\mathbf{PG}^{d}	\mathbf{G}^{d}	

^a MGC is the minimum value of *cyclo*(Leu-Leu) concentration indicated by letters G or PG, where G – complete gelation, PG – partial gelation; ^b after 12 h; ^c after one day; ^d after two days.

Table S3. Gelation ability and concentration of *cyclo*(Leu-Leu) in systems with 1 mL of aromatic solvents. ^a

Solvent	MGC, mg mL ⁻¹			
Solvent	1.5	2	2.5	
Benzene	G^b	G^b	G^b	
Toluene	G^b	G^b	G^b	
o-Xylene	PG^{c}	G^b	G^b	
<i>m</i> -Xylene	G^b	\mathbf{G}^{b}	G^b	
<i>p</i> -Xylene	PG^{b}	\mathbf{G}^{b}	G ^c	
Ethylbenzene	\mathbf{G}^{c}	G^b	G ^c	

^{*a*} MGC is the minimum value of *cyclo*(Leu-Leu) concentration indicated by letters G or PG, where G – complete gelation, PG – partial gelation; ^{*b*} after six hours, 10 μ l of water were added; ^{*c*} after 18 hours, 20 μ l of water were added.