Passive droplet generation in aqueous two-phase

systems with a variable-width microchannel

Daeho Choiłt **, Eunjeong Leet **, Sung-Jin Kim II, and Minsub Han ${ }^{* *}$
\dagger Mechanical Engineering, Incheon National University, Incheon, 22012, Korea
【 Mechanical Engineering, Konkuk University, 05029, Seoul, Korea
\$ Department of Research and Development, Hanil Knuckle Press Co. Ltd., Incheon, Korea
* equal contributions

[Fig.SI-1] The concentration case of DEX/PEG= 6.4/5 (\% w/v). The triangle symbol stands for DEXinlet width of 2.89 ± 0.08, the circular symbol for 4.74 ± 0.03, and the rectangular symbol for $10.36 \pm 0.09 \mu \mathrm{~m}$. The open symbol stands for the droplet-generation regime, the half-filled symbol for the transition regime, the filled symbol for the stable jet regime. The solid line stands for the width of 2.89 ± 0.08, the dashed line for 4.74 ± 0.03, and the dotted line for 10.36 ± 0.09 μm.

[Fig.SI-2] The concentration case of DEX/PEG= $16 / 10(\% \mathrm{w} / \mathrm{v})$. The triangle symbol stands for DEXinlet width of 2.89 ± 0.08, the circular symbol for 4.74 ± 0.03, and the rectangular symbol for $10.36 \pm 0.09 \mu \mathrm{~m}$. The open symbol stands for the droplet-generation regime, the half-filled symbol for the transition regime, the filled symbol for the stable jet regime. The solid line stands for the width of 2.89 ± 0.08, the dashed line for 4.74 ± 0.03, and the dotted line for 10.36 ± 0.09 μm.

[Fig.SI-3] The breakup time error(\%) of theoretical prediction (Eq.(3)) from the measured data. X is the ratio of the thread diameter and channel height.

[Derivation of Eq. (1)]

An incompressible, laminar flow in a cylindrical pipe is considered that is fully-developed, unidirectional, and with no applied body force. The Navier-Stokes equation then gives
$0=-\frac{d P}{d x}+\mu \frac{1 d}{r d r}\left(r \frac{d v}{d r}\right)$

We first consider the inlet channel of the DEX-rich phase the radius of which is R_{D}. The velocity profile is then obtained as
$v_{D}^{i}=-\frac{1 d P}{4 \mu d x}\left(R_{D}{ }^{2}-r^{2}\right)$
and

$$
Q_{D}=\int_{0}^{R_{D}} 2 \pi r d r v_{D}^{i}
$$

. So,
$Q_{D}=-\frac{1 d P}{8 \mu d x} R_{D}{ }^{4}$

Here we put the pressure gradient as
$\frac{d P}{d x}=\frac{P_{j}-P_{D}}{l_{D}}$
And get
$Q_{D}=-\frac{\pi P_{j}-P_{D}}{8 \mu l_{D}} R_{D}{ }^{4}$

Where the subscript j stands for the location where the DEX and PEG flows joins. We then consider the flow in the main channel where the DEX-rich phase occupies the inner region in the pipe, $0 \leq r<r_{D}$, and the PEG-rich phase occupies the outer region, $r_{D}<r \leq R$.
After integrating Eq. (SI-1), the boundary condition determine that, at $r=r_{D}$,
$\frac{1 d P}{4 \mu_{D} d x} r_{D}^{2}+B_{D}=\frac{1 d P}{4 \mu_{p} d x} r_{D}^{2}+B_{P}$
and, at $r=R$,
$0=\frac{1 d P}{4 \mu_{p} d x} R^{2}+B_{P}$
So that we get the velocity profiles as
$v_{P}=\frac{1 d P}{4 \mu_{p} d x} r^{2}-\frac{1 d P}{4 \mu_{p} d x} R^{2}$
and
$v_{D}=\frac{1 d P}{4 \mu_{D} d x} r^{2}+\frac{1}{4}\left(\frac{1}{\mu_{p}}-\frac{1}{\mu_{D}}\right) \frac{d P}{d x} r_{D}^{2}-\frac{1 d P}{4 \mu_{p} d x} R^{2}$

By integration, we get the volume flow rates,
$Q_{P}=\int_{r_{D}}^{R} 2 \pi r d r v_{P}$
$Q_{P}=-\frac{\pi d P}{8 \mu_{p} d x}\left(r_{D}^{2}-R^{2}\right)^{2}$
$Q_{D}=\int_{0}^{r_{D}} 2 \pi r d r v_{D}$
$\therefore Q_{D}=-\frac{\pi d P}{8 \mu_{D} d x} r_{D}^{4}-\frac{\pi d P}{4 \mu_{D} d x} r_{D}^{2}\left(R^{2}-r_{D}^{2}\right)$

Applying $\frac{d P}{d x}=\frac{P_{\text {out }}-P_{j}}{l_{D}}$ to Eq. (SI-4), we get
$Q_{P}=-\frac{\pi P_{\text {out }}-P_{j}}{8 \mu_{p} l_{D}}\left(r_{D}^{2}-R^{2}\right)^{2}$
And, therefore,
$P_{j}=Q_{P} \frac{8 \mu_{p} l_{D}}{\pi\left(r_{D}^{2}-R^{2}\right)^{2}}+P_{\text {out }}$

Putting Eq.(SI-5) into Eq.(SI-3), we get Eq.(1):
$Q_{D}=\frac{\pi R_{D}^{4}}{8 \mu_{D} l_{D}}\left(P_{D}-P_{\text {out }}\right)-Q_{P} \frac{\mu_{P}}{\mu_{D}}\left(\frac{l}{l_{D}}\right) \frac{R_{D}^{4}}{\left(r_{D}^{2}-R^{2}\right)^{2}}$

We can also start out with a geometry with rectangular channel with a high aspect ratio such as width, $2 w$, height, $2 h$, and $w \gg h$. Following similar steps in the previous derivation, we can obtain:
$Q_{D}=\frac{4}{3}\left(P_{D}-P_{\text {out }}\right) / \mu_{D}\left(\frac{l}{w h^{3}}+\frac{l_{D}}{w_{D} h_{D}^{3}}\right)-Q_{P} \frac{\mu_{P}}{\mu_{D} 1+\frac{l_{D} w h^{3}}{l_{w_{D} h_{D}^{3}}}}$

