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1. The criteria of boundary instability in crystal sheet on spherical substrate

Firstly we assume that the boundary of circular crystal sheet experiences a small periodic 

perturbation:

,                            (S1)  cosnr W a n  

where W is the initial radius of the circular sheet,  is the amplitude of the small perturbation with na

, and  is an integer represent the azimuthal wave number. The total chemical potential 1na W = 2n 

 of the crystal sheet is given by3 

,                           (S2)   0= + eC E       

where  is the undisturbed chemical potential far from the boundary and  is the surface area.  is 0  

the edge energy per unit length of the boundary, which mainly consists of the adhesive energy and 

generates the boundary force.  and  are the curvature and the elastic energy per unit area at  C   eE 

the perimeter. After the perturbation the stress function  has the general form: 4 ,r 

,                   (S3)     2, cosn n
n n nr r a r r n       

where  is the stress function far from the perturbed edge and is independent of azimuthal angle ,  r 
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 and  are undetermined coefficients which can be defined by the boundary conditions:n n

                            (S4) ij j in C n   

with  to the first order of . For the given perturbation form as Eq. (S8)   sinna W n n n r θ na W

shows, the curvature can be expressed as

,                  (S5)      21 1 1 cosnC W n a W n     

then the coefficients  and  which satisfy the boundary conditions Eq. (S4) can be determined and n n

the Airy stress function is shown as4 
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where  is the hoop stress in the absence of boundary perturbation. The stress-redistribution  0 W

induced by boundary perturbation consists of two parts: the elastic energy of crystal sheet and the work 

of boundary force. In the range of , the second term in Eq. (S6) of stress function can  0W W 

be neglected. It means that in the case of edge energy dominates, the radial stress at the perimeter 

stretches the crystal sheet and the boundary is always stable. On the contrary, when ,  0W W =

the elastic energy density along the perimeter is

,  (S7)
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It is worth noting that although the stress function includes the contribution of surface elasticity, but in 

the limit of , the elastic energy only contain the part of geometrical frustration induced  0W W =

stress. So the total chemical potential along the perturbed boundary can be expressed by 
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where  with Y the 2D Young’s modulus. To evaluate the stability     20
0 0 2W Y W          %

of the given perturbation, the atomic flux driven by the chemical potential gradient along the perimeter 

is , where  is the mobility with  the surface diffusivity,  the atom 
MJ
W





 

 s sM D kT  sD s

number per unit area and  the thermal energy. By substituting  into Eq. (S7), kT  0 2 28W YW R  

the normal velocity of the perimeter can be express by the atomic flux as 
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Considering the perturbation form Eq. (S1), we can obtain that 
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Comparing Eqs. (S9) and (S10), the perturbation can be expressed as

 ,                          (S11)    /0 t
n na t a e 

where 

.                 (S12)   
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From Eqs. (S11) and (S12) one can see that  means that the perturbation amplitude grows with the 0 

time, while  means that the perturbation diminishes with the time. So the first term in bracket of 0 

Eq. (S12) denotes that the edge energy suppresses the boundary instability of crystal sheet and the 

circular sheet is energetically stable. In contrast, the second term of elastic energy is energetically 

favorable for the boundary instability. The competition between edge energy and elastic energy regulates 

the stability of the crystal sheet’s perimeter. The critical condition of boundary instability is can be 

obtained from  that 0 
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2. The material properties of curved crystalline cap in BD simulation

Employing the stress expressions Eqs. (2)(3) and the stress which is calculated by relaxing a cap at 

zero temperature until its energy reaches the minimum value, the Young’s modulus and edge energy of 

curved crystal are fitted with least-squares. Figure S1 shows the relationship between fitted Young’s 

modulus Y versus different curvature radii R/a at fixed crystal size  and LJ potential strength0.3W R 

. The Figure S2 shows the positive correlation between Y and  at and 0 3.5 BU K T 0U 40R a 

. As a comparison, the results of Young’s modulus from simulated stress-strain curve are also 0.3W R 

plotted in Figure S2. Figure S1 and Figure S2 verify that the material properties from fitting method are 

credible in spite of the numerical deviation.
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Figure S1 The relationship between fitted Young’s modulus Y versus different curvature radii R/a 

at fixed crystal size  and LJ potential strength .0.3W R  0 3.5 BU K T
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Figure S2 The relationship between Young’s modulus Y versus different LJ potential strength  0U

at fixed crystal size  and curvature radius . The black dotted line is the fitting 0.3W R  40R a 

result and the red dotted line is the result from 2D stretching stress-strain curve as Figure 4 shows, 

respectively.

In the same way, the boundary force T of curved crystal in the Eqs. (2)(3) is fitted and plotted in 

Figure S3 at fixed  and . It is found that the boundary force is compressive stress 40R a  0.3W R 

(T<0) and its absolute value increases with the increase of LJ potential strength . With the 0U

relationship , Figure S4 shows the dependence of edge energy  on  at fixed  T W   0U 40R a 

and .0.3W R 
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Figure S3 The dependence of boundary force T on the LJ potential strength  at fixed  0U 40R a 

and .0.3W R 
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Figure S4 The dependence of edge energy  on the LJ potential strength  at fixed   0U 40R a 

and .0.3W R 

3. The relationships between dislocation density  with  and R/a W R

We define  as the dislocation density of assembled crystals with M the number of 24M R 

dislocations. Figure S5 and Figure S6 shows the relationships between the dislocation density  with 

 and R/a, respectively. It is clear from Figure S5 that the dislocation density increases with the W R



increase of  at the fixed substrate radius R/a=20 and minimal potential  when W R 0 3.5 BU K T

 reaches a critical value . When area fraction  and minimal potential W R =0.49W R =0.89W R

 are fixed, the increase of R/a leads to a morphological transition from dislocation-0 3.5 BU K T

decorated circular crystal shape to anisotropic growth of crystal, and the dislocation density decreases 

monotonously and finally reaches zero.
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Figure S5 The dislocation density  of assemblies on spherical surfaces versus  for fixed R/a=20  W R

and                    . 0 3.5 BU K T
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Figure S6 The dislocation density  of assemblies on spherical surfaces versus R/a for fixed 



 and                    . 0.89W R  0 3.5 BU K T

4. The evolution sequences of the simulated results

Figure S7 shows the evolution sequences of the simulated results Fig. 6(e), Fig. 6(j) and Fig. 7(d) 

for different time steps. We find that the elastic instability which is encountered first will maintain its 

type during assembly process until the crystal reaches the kinetically stable state, although the crystal 

morphologies will evolve from the dispersed particles to compact crystal.

Figure S7 The evolution sequences of the simulated crystal morphologies for different time steps.

5. The stress configurations of the curved crystal cap in BD simulation and the fitting procedure

Using the Langevin thermostat at absolute zero temperature, we calculate the stress field of a 

constrained crystalline cap on spherical surface. Figure S8 shows the hoop stress distributions of the 

crystal caps for discrete particles under potential strength. It is obvious that the stress increases with the 

increase of potential strength. Given the symmetrical stress fields and the geometric parameter W/R, the 

Young’s modulus Y and edge energy  can be numerically fitting from the stress expression 

. Figure S9 shows the comparison between the discrete stress field and    0 2 2
2 3

16
Yr W r
R W

   

the continuous elliptical paraboloid surface obtained by least square method. Except the simulated stress 

near the edge of crystal cap which shows major errors, the fitting method can well extract the features 



of the stress field.

Figure S8 The hoop stress distributions of the crystal caps with the size of R/a=40 and W/R=0.3. Here 

the unit of the calculated 2D stress is N/m. 
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Figure S9 The numerically fitting of the discrete stress field. The size is R/a=40 and W/R=0.4, and the 

potential strength is |U0|=3.5KBT. Here the unit of the calculated 2D stress is N/m. 

6. The calculation of the edge energy from a straightforward approach

To validate the reasonability of the values of edge energy from the fitting method, here we perform 

a straightforward approach for calculating the edge energy. First we create a monolayer structure with 

dimensions of , as shown in Fig. S10(a). Starting from the initial  lattice spacing, 200 400a a 1.1225

we perform energy minimization for the 2D sheet. Then we separate the 2D sheet into two same-sized 

parts along x direction as Fig. S10(b) shows, and the system is fully relaxed. The edge energy of the 2D 

LJ crystal is calculated by , where  and  are the minimum potential   2cut cut initial xE E l   initialE cutE

energies for the configurations in Figs. S10 (a) and (b), respectively, and  is the length of the 2D sheet xl

in x direction. Periodical boundary conditions are applied in the calculation. The difference between the 



two methods is that the “cutting” method is a straightforward approach to calculate the energy increasing 

per unit length when separating a 2D sheet along a line of known length, while the fitting method in this 

work employs the edge effect on the 2D elasticity encoded by the relationship of  as  ij j in C n   

the boundary condition and fits the edge energy  from the stress distribution of the curved crystal. We 

must say that there is no difference between  and  which both represent the edge energy. However  cut

the fitting method to determine the value of  is an indirect method in comparison with the 

determination of . The results in Fig. S11 confirm that the values of the edge energy  obtained by cut 

two different methods are almost the same. It means that the fitting edge energy from the stress 

distribution in this work is reliable. 

Fig. S10 The schematic diagram of separating a 2D sheet along x direction.
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Fig. S11 The dependence of the edge energy on the potential strength. The results in red color are obtained by the 

“cutting” method, and the results in black color are fitted from the stress distribution of curved crystal at fixed 

 and .40R a  0.3W R 
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