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NEMD Method and Potential Model

Canonical (NVT) nonequilibrium molecular dynamics (NEMD) simulations were carried out 

using the well-known p-SLLOD algorithm1 implemented with the Nosé-Hoover thermostat.2,3 

The set of equations of motion is given by:
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where ri, pi, and Fi are, respectively, the position, momentum, and force vector of the ith atom 

of mass mi. η and pη are the coordinate- and momentum-like variables, respectively, of the 

Nosé-Hoover thermostat with the thermostat mass parameter Q. The relaxation time 

parameter τ was set equal to 0.24 ps for NEMD simulations. D denotes the dimensionality of 

the system and kB Boltzmann’s constant. N, V, and T represent the total number of atoms, the 

system volume, and the system temperature, respectively. 

The SKS united-atom potential model4 was adopted for GENERIC MC and NEMD 

simulations, except that the original rigid bond was replaced by a flexible one with a 

harmonic potential for NEMD. In this model, the nonbonded intermolecular and 

intramolecular interactions between atomic units are described by a 6-12 Lennard-Jones (LJ) 

potential:
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where  and  for cross interactions between atoms i and j by ij i j   ( ) 2ij i j   

adopting the standard Lorentz-Berthelot mixing rules. The LJ energy parameters  
2CH Bk

and  were set equal to 47 K and 114 K, respectively, and the size parameters  
3CH Bk

2CH

and  equal to 3.93 Å identically. A cut-off distance equal to 2.5  was used in all the 
3CH

2CH

NEMD simulations. The intramolecular LJ interaction was active only between atoms 

separated by more than three bonds along the chain. The three bonded interactions [bond-

stretching (Ustr), bond-bending (Uben), and bond-torsional (Utor) energies] were modeled by 

the following expressions: 
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where the bond-stretching constant and equilibrium bond length were kstr/kB = 452,900 K/Å2 

and leq = 1.54 Å, respectively. The bond-bending constant were set as kben/kB = 62,500 K/rad2, 

and the equilibrium bending angle θeq = 114⁰. The bond-torsional constants were such that (a) 

a0/kB = 1010 K, a1/kB = 2019 K, a2/kB = 136.4 K, and a3/kB = -3165 K. Note that ϕ = 0 

represents the (most stable) trans-state.
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Table S1 Percent acceptance rates of the MC moves (flip, end-mer rotation, reptation, 

concerted rotation, and end-bridging) used in the GENERIC MC simulations of the C400H802 

linear polyethylene melt under shear at various flow strengths. It is particularly noticed that 

the acceptance rate of the end-bridging move, which is the most efficient MC algorithm 

driving large-scale structural deformations of the polymer systems to a steady nonequilibrium 

state for a given flow field, decreases significantly as the flow strength increases. This feature 

results in a significant increase in the computational cost of the GENERIC MC simulation for 

strong flow fields.

MC move

De
flip
(%)

end-mer
rotation

(%)
reptation

(%)

concerted 
rotation

(%)
end-bridging

(%)
0.5 78 19 9 8 0.314
1 78 19 9 8 0.277
2 78 19 9 8 0.257
10 79 19 9 9 0.113
54 79 19 9 8 0.076
108 79 19 9 8 0.066
216 79 19 9 8 0.060
540 79 19 9 8 0.050
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Fig. S1 Preliminary GENERIC MC results by applying the field tensor  obtained from 

unentangled polyethylene (PE) melts5,6 to the conformation tensor  of the chain end-to-etec%

end vector (red triangles-up) and  of the entanglement segment vector (green triangles-segc%

down) for the C400H802 entangled PE system in comparison with NEMD results. For the weak 

flow regime (De < 2), the two GENERIC results appear similar to each other with reasonable 

agreement with NEMD. However, systematic deviations appear as flow strength increases. 

For the case of  as the structure variable, the GENERIC MC predicts a lesser degree of etec%

increasing tendency of  and decreasing tendency of  with increasing flow strength. ,ete xxc% ,ete zzc%

For the case of  as the structure variable, the GENERIC MC particularly overpredicts the segc%

xy component.
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Fig. S2 Comparison between GENERIC MC (triangles) and NEMD (circles) for the xx, xy, yy, 

and zz components of conformation tensor  based on the entanglement strand vector esc%

(identified by the Z1-code7,8) as a function of De number for the simulated C400H802 entangled 

PE melts. This result in conjunction with that of  (Fig. 2 in the main text) indirectly etec%

indicates that if the conformation tensor of the entanglement segment vector was chosen as 

the matching variable between GENERIC MC and NEMD, the conformation tensor  of etec%

the chain end-to-end vector would not match well between the two methods.
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Fig. S3 Comparison between GENERIC MC (dashed lines) and NEMD (solid lines) for the 

probability distribution function (PDF) of the chain end-to-end distance  at various De eteR

numbers. Note that the results of the GENERIC MC simulations involve all the chains of the 

system ranging from C200H402 to C600H1202. Compared to the corresponding results involving 

only the chains in the range C350H702 to C450H902 (Fig. 3 in the main text), the higher 

polydispersity leads to a broadened PDF for larger  values, particularly noticeable for eteR

high De numbers.
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Fig. S4 Comparison between GENERIC MC (triangles) and NEMD (circles) for the mean-

square distance  and the magnitude of three (x, y, and z) components of the 2
esR

entanglement strand vector (Res) of identified by the Z1-code,7,8 as a function of De number. 

As physically consistent with the chain alignment and stretch in the flow (x-)direction, the x 

component increases but the y and z components decrease as the shear rate increases. 

Additionally, the decreasing tendency of the y component in velocity gradient direction is 

stronger than that of the z component in neutral direction. Overall, the two simulation 

methods give rise to quantitatively quite similar behaviors to each other. 
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Fig. S5 Comparison of the stress tensor  obtained from the NEMD simulations with the 

elastic stress tensor calculated based on  [eqn (8) in the main text] by 2 /B seg segk TN V  c%

the GENERIC MC simulations. Quantitatively consistent behaviors between the two results 

are observed up to De  10, beyond which systematic discrepancies appear. This is ascribed 

to the intrinsic inability of the GENERIC MC method to accommodate the effects of chain 

rotation and tumbling dynamics with structural and dynamical correlations at high shear rates.



10

Fig. S6 Comparison for (a) the nonequilibrium Helmholtz free energy  and (b) ( )eqA A A  

the three (xx, xy, and yy) components of the thermodynamic force field  between the 

GENERIC MC simulations and the three viscoelastic models [upper convected Maxwell 

(UCM), Pompon, and Marrucci models]. It is noted that while in the bracket9 or GENERIC10 

formalism of nonequilibrium thermodynamics, each model is generally described as a 

combined set of (i) Helmholtz free energy functional with respect to structural variables (i.e., 

conformation tensor) and (ii) evolution equations of the structural variables in response to the 

flow field, the analysis here involves only (i) the free energy function with respect to the 

conformation tensor for which we employed the results obtained from the GENERIC MC 

simulations. Therefore, our preliminary result provides the information on the relevance of 

the functional form of free energy in terms of the structural variables assumed in each model 

(we leave to future work for more complete analysis with detailed numerical and theoretical 

comparisons). As seen in Fig. S5, the three models show qualitatively quite consistent 

behaviors for  and  in comparison with the simulation, although there appear some A
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quantitative discrepancies. The model predictions for  and  are summarized as A

follows:9,10

  where the number of entanglement segments per molecules, Z=6 
,
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where q = 1 for linear polymers.

Marrucci model
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where   (Zes obtained from the Z1-code).es
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Z
Z' = Z
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