

ARTICLE TYPE

Cite this: DOI: 10.1039/xxxxxxxxx

Electronic supplementary information: Temperature induced conformational changes in the elastin-like Peptide GVG(VPGVG)₃

Alexander Matt,^{*a} Björn Kuttich,^a Isabelle Grillo,^b Susann Weißheit,^c Christina M. Thiele^c and Bernd Stühn^a

1 Details on the scattering constant

The fitting model given in equation 1 of the main article includes the pre-factor c, which is given by $c = c_m \cdot K \cdot M_1$. The pre-factor depends on the mass concentration c_m of peptide in the buffer, the scattering constant K and the molecular weight M_1 of the scattering object, i.e. the hydrated peptide.^{1,2} Decomposing the scattering constant further we obtain

$$K = (\Delta \rho_{\rm SLD})^2 \frac{\nu_1^2}{M_1^2 N_A},$$
 (1)

including the molar volume of the scattering object v_1 , Avogadro's Number N_A and the contrast in scattering length densities $\Delta \rho_{\rm SLD}$ between the buffer solution and the hydrated peptide. Since the hydration number of the peptide ($n_{\rm hyd}$ = number of water molecules per peptide chain) is not known it is treated as a fitting parameter. However, the precise value of $n_{\rm hyd}$ depends crucially on the peptide's molar volume, explicitly included in equation 1 of the ESI and implicitly in $\Delta \rho_{\rm SLD}$, which can be only estimated. Based on the mass density of PEG of $1.13 \, {\rm g/cm}^3$ we assume the molar volume of the peptide to be $v_1 = 1300 \, {\rm cm}^3/{\rm mol}$ within 10% accuracy.³ The resulting hydration numbers for all investigated peptide concentrations and temperatures are given in figure 1 of the ESI.

As can be seen the hydration number is systematically decreasing with increasing temperature. This observation is in accordance with the increasing intensity of the low q-value plateau depicted in the upper panel of figure 1 of the main article. If water is expelled from the scattering peptide the scattering length density difference between hydrated peptide and surrounding buffer solution increases leading to stronger scattering at small q-values. Furthermore, it supports our interpretation of an aggregation process upon heating, favouring peptide-peptide interaction above water-peptide interactions. For each investigated concentration the hydration number decreases linearly with tem-

Fig. 1 Hydration numbers for all investigated peptide concentrations and temperatures deduced from fitting of the pre-factor given in equation 1 of the main article.

perature. Extrapolating this linear dependency to zero concentration the dashed black line depicted in figure 1 is obtained. The slope of this extrapolated line is (-0.3 ± 0.1) K⁻¹ which is in agreement with molecular dynamic simulations on an isolated GVG(VPGVG)₃ chain.⁴ However, absolute values have to be treated with caution, due to the 10% uncertainty in the peptide's molar volume, given hydration numbers may be $\pm 50\%$ off.

2 Residual plots

In the main article fitting by either the Guinier approach or the model function given in equation 1 is performed. For the two datasets presented in figure 2 and 7 of the main article we depict here in figure 2 the respective residual plots. For the Guinier approach fit accuracy is very good all deviations are below 1% along the whole range of considered q-values. Fitting the high concentration sample at various temperatures with the more complex model given in equation 1 of the main article, shows slightly more deviations. However, fitting accuracy is still better than 2%.

^a Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstraße 6, 64289 Darmstadt, Germany.

^b Institut Laue-Langevin,71 Avenue des Martyrs, 38000 Grenoble, France.

^c Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 16, 64287 Darmstadt, Germany.

Fig. 2 Residual plot for the fitted datasets presented in figure 2 (upper panel) and 7 (lower panel) of the main article.

References

- 1 J. Higgins and H. Benoît, *Polymers and Neutron Scattering*, Clarendon Press, 1996.
- 2 T. Zemb and P. Lindner, *Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter*, Elsevier, 2002.
- 3 E. Hanke, U. Schulz and U. Kaatze, *ChemPhysChem*, 2007, **8**, 553–560.
- 4 B. Zhao, N. K. Li, Y. G. Yingling and C. K. Hall, *Biomacro-molecules*, 2016, **17**, 111–118.