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Supplementary Discussion

The perfect-crystal model in comparison
to the Griffith model of cracking

In our model, we assume a perfect crystal; thus, the criterion for RC fracture is simply when
the stress is equivalent to the capillary stress:
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where we assume the defect length is on the order of Ry.. If we substitute our effective

modulus (£ = 2,/ %Lt;’), then
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Comparing the ratio of the perfect-crystal and Griffith criterion,
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when we use physical quantities that describe our experimental system (Ryes = 67 pm,
Kyet = 22.5kPa, and v = 72mNm™!). Thus,
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Therefore, while perfect-crystal behavior is not perfectly representative of our experiments,
it is reasonable to approximate the experimental system as a perfect crystal by these scaling
arguments. Nonetheless, our theory is compatible with the Griffith criterion.
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Figure S1: Measuring fluorescence intensity of beads is a viable and precise method of deter-
mining bead size. (a) We segmented a test image of reversible cracking into individual bead
components. We then measured the bead size using two methods: by direct measurement
of the size of the segmented components (blue) and by measurement of the fluorescence
intensity of the segmented components (orange). (b) Plotting the normalized bead size—in
reference to the largest bead size in the interior—as a function of radial position, we can
see that there is little difference from the two methods. Both methods reveal a gradient in
bead size to which we fit a parabolic curve for the purpose of comparison. The difference
in these fits is at most 5%. The precision of the fluorescence-intensity method, however,
is approximately an order of magnitude better than the direct-size method as indicated by
the smaller error bars associated in the orange data points. Error bars correspond to one
standard deviation of the scatter in the data.
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Figure S2: Nondimensionalized analytical solutions to the simplified continuum model

demonstrate the influence of the Biot number. For each plot, /R on the abscissa and each
curve represents the solution at a given nondimensional time—quantified by the Fourier num-
ber (T = Dyeit/R2.;)- (a) The water content solution (Eq. 4), as nondimesionally quantified
by 1, shows more differential shrinkage (more downward sloping curves) with increasing Bi.
(b) The radial displacement (Eq. 9), as nondimesionally quantified by —u,/€dqry (€ary < 0)
also describes this differential shrinkage increase with Bi. This shrinkage increase is shown
by the stronger downward concavity at higher Bi. Note that u, < 0 since the radial coor-
dinate is directed outward and overall motion of the packing is inward. (c) The increased
differential shrinkage with Bi also increases the azimuthal stress (Eq. 10), which is nondi-
mensionally quantified by —ogg/eqry. Positive values represent tension between beads while
negative values represent compression. Stress with the highest magnitudes are tensile and

occur at the periphery.
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Figure S3: The maximum stress (red curves) in Biot—Fourier space (top) and as a function
of Biot number (bottom). The top graph plots contours of —ogg/€qry while the bottom
plots —ogg/€ary as a function of Biot number (e4,y < 0). The red curve is the true numerical
maximum stress at a given Biot number, which cannot be expressed in closed form, while the
blue curve is an analytical approximation (Eq. 11) used in developing our cracking criteria.
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Figure S4: Ordered packing initial configuration (wet state). The bead radii are uniformly
Ryt = 1. Initial bonds are placed where beads overlap. The structure is perfectly hexagonal-
close-packed.



Figure S5: Disordered packing initial configuration. The bead radii are randomized according
to a Gaussian distribution (u = Ewet =1,0= 0.1]%“,6,; = 0.1). Initial bonds are placed where
beads overlap. There are no bonds where beads do not overlap; thus, there are certain bonds
missing when compared to the ordered case (Fig. S4).
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Figure S6: State diagrams of ordered (Fig. S4) and disordered (Fig. S5) systems where
Owet = 0.22 and M = 91.
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simulations performed and cracking criteria
(Egs. 13,14,15,16). Cracking behaviors were classified according to the number of bond
breaks and the distances between beads at the dry state (see Materials and Methods). The
occurrence of a small fraction of data points being inconsistent with cracking criteria, e.g.
IC points in an RC region, can be attributed to an artifact of arbitrary classification rules.
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Supplementary Videos

Supplementary Video S1
A small packing does not crack as it is dried (NC).

Supplementary Video S2

A medium-sized packing cracks and self-closes (RC).

Supplementary Video S3

A large packing irreversibly cracks into clusters (IC).

Supplementary Video S4
Capillary bridges between hydrogel beads break as crack propagates.

Supplementary Video S5

~

A DEM simulation of NC behavior. dyet = 0.22, Ffr = 0.01, M = 187, f = 0.14,
Bi = 0.10.

Supplementary Video S6

~

A DEM simulation of RC behavior. 0we = 0.22, Fg = 0.01, M = 187, f = 0.14,
Bi = 15.85.

Supplementary Video S7

A DEM simulation of IC behavior. Owe = 0.22, Frp = 0.03, M = 187, f = 041,
Bi = 15.85.
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