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S1 – Locating local minima in the (ω,k) space for the solutions of the characteristic equation 24 

The complex characteristic equation det(S) = 0 (eqn 29) was solved by searching the solution pairs of 25 

angular frequency ω = 2πf (f is frequency) and complex wavenumber k where the magnitude for the left-26 

hand side of eqn (29) equals to zero, i.e., |det(S)| = 0. Note that it may be difficult to obtain absolute zero 27 

in numerical calculation; therefore, in practice, the solutions were determined instead by locating local 28 

minima of |det(S)| in the (ω,k) space. Specifically, the search of solutions includes the following steps: (1) 29 

choose a certain angular frequency ω within the range of interest, (2) sweep a range of k to find the local 30 

minima, and (3) change to a different ω and repeat step (2). For pure-elastic materials, the wavenumber k 31 

only has the real part, so the sweep in step (2) was one-dimensional along the axis of real wavenumbers kR 32 

= Re{k}. For viscoelastic materials, k is a complex number composed of the real (kR) and imaginary (kI = 33 

Im{k}) parts, so the sweep became two-dimensional over the (kR,kI) plane.  34 

Figure S1a shows an example of |det(S)| variation over the (kR,kI) space for a model viscoelastic 35 

material. The magnitude |det(S)| is plotted in logarithmic scale for visualization purposes. The dent in the 36 

middle of the surface is one of the local minima of |det(S)|, and the wavy wrinkles on the upper and lower 37 

sides of the surface are numerical errors. The wave wrinkles were confirmed to be numerical errors since 38 

they were also observed in the pure-elastic model material as shown in Fig. S1b. The pure-elastic material 39 

had the same properties as the viscoelastic material with the sole difference that the shear viscosity ημ was 40 

changed to zero. Since the wavenumber for the pure-elastic material only has the real part, the local minima 41 

should only appear on the kI = 0 axis.  42 

To remove the numerical errors and identify the local minimum in Fig. S1a, |det(S)| of the pure-43 

elastic material (Fig. S1b) was subtracted from that of the viscoelastic material (Fig. S1a), yielding a clear 44 

inverted cone indicating the local minimum as shown in Fig. S2. 45 
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 47 

Fig. S1: Variation of the magnitude |det(S)| over the (kR,kI) plane for model materials with (a) viscoelastic 48 
properties and (b) pure-elastic properties. The wavy wrinkles observed both in (a) and (b), suggest that they 49 
are numerical errors. 50 

 51 
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 53 

Fig. S2: Local minimum of |det(S)| obtained by subtracting the |det(S)| of the pure-elastic material (Fig. 54 
S1b) from that of the viscoelastic material (Fig. S1a). 55 

  56 
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S2 – Simplified Characteristic Equation for the Elastic Curved Plate Reported in Liu and Qu (1998) 57 

The elastic curved plate reported in the article has traction-free condition for both sides of the plate, which 58 

corresponds to four boundary conditions: zero normal traction at the inner surface (r = a) 𝜎𝑟𝑟|𝑟=𝑎 = 0, , 59 

zero normal traction at the outer surface (r = b), 𝜎𝑟𝑟|𝑟=𝑏 = 0, zero shear traction at the inner surface, 60 

𝜎𝑟𝜃|𝑟=𝑎 = 0, and zero shear traction at the outer surface, 𝜎𝑟𝜃|𝑟=𝑏 = 0. These conditions lead to a four-by-61 

four S matrix in eqn (28): 62 

𝐒 =

[
 
 
 
𝐷31|𝑟=𝑎 𝐷32|𝑟=𝑎 𝐷33|𝑟=𝑎 𝐷34|𝑟=𝑎

𝐷31|𝑟=𝑏 𝐷32|𝑟=𝑏 𝐷33|𝑟=𝑏 𝐷34|𝑟=𝑏

𝐷41|𝑟=𝑎 𝐷42|𝑟=𝑎 𝐷43|𝑟=𝑎 𝐷44|𝑟=𝑎

𝐷41|𝑟=𝑏 𝐷42|𝑟=𝑏 𝐷43|𝑟=𝑏 𝐷44|𝑟=𝑏]
 
 
 
                                            (S7) 63 

 64 

  65 
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S3 – Numerical methods for calculating Bessul functions with complex orders  66 

In eqn (14) and (15), the general solutions of the scalar and vector potential functions are linear 67 

superpositions of Bessel functions with a complex order ν = kb as k is the complex wavenumber. A 68 

numerical challenge arises with the Bessel functions that have complex orders since they are not supported 69 

in MATLAB (Release R2016b, MathWorks). To resolve the challenge, this section provides the details of 70 

mathematical properties that enable the calculation of the approximate values for Bessel functions of this 71 

kind. 72 

According to eqn (9.1.20) in Handbook of Mathematical Functions with Formulas, Graphs, and 73 

Mathematical Tables (Abramowitz and Stegun, 1964), the Bessel function of the first kind has the 74 

expression: 75 

𝐽𝜈(𝑧) =
2(

1

2
𝑧)

𝜈

√𝜋 Γ(𝜈+
1

2
)
 ∫ (1 − 𝑡2)𝜈−

1

2
1

0
cos(𝑧𝑡) 𝑑𝑡, ℝ(𝜈) > −

1

2
                               (S1) 76 

where ν and z are the order and the argument, respectively, of the Bessel function J, and Γ(x) is the Gamma 77 

function. In our case, the order ν is the product of the complex wavenumber k and outer sphere radius b, 78 

i.e., ν = kb, so that ν is complex. 79 

The recurrence relation (eqn 9.1.27 in Abramowitz and Stegun) can be used to extend the order of 80 

the Bessel function to the whole complex plane that is not covered in eqn (S1); i.e., use 81 

𝐽𝜈−1(𝑧) + 𝐽𝜈+1(𝑧) =
2𝜈

𝑧
𝐽𝜈(𝑧)                                                      (S2) 82 

for ℝ(𝜈) ≤ −1/2. 83 

In addition, the Bessel function of the second kind Yν(z) is also required in our theoretical model, 84 

which has the relationship with the first kind (eqn 9.1.2 in Abramowitz and Stegun) given by 85 

𝑌𝜈(𝑧) =
𝐽𝜈(𝑧) cos(𝜈𝜋)−𝐽−𝜈(𝑧)

sin(𝜈𝜋)
                                                         (S3) 86 

Note that the Gamma function in eqn (S1) has a complex argument ν + 1/2; therefore, the value of 87 

Gamma function must be determined through the definition of integral form (6.1.1 in Abramowitz and 88 

Stegun): 89 
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Γ(𝑥) = ∫ 𝑡𝑥−1𝑒−𝑡𝑑𝑡
∞

0
, ℝ(𝑥) > 0                                                 (S4) 90 

Eqn (S4) can be calculated using the Upper Incomplete Gamma Function igamma provided in 91 

MATLAB function library; however, the calculation speed of this approximation might be slow. An 92 

alternative method with enhanced calculation speed to acquire the approximate values of the Gamma 93 

function with complex argument can be found in an algorithm library created by Paul Godfrey 94 

(http://my.fit.edu/~gabdo/paulbio.html). 95 

Similar to the Bessel functions, the recurrence relation of the Gamma function (eqn 6.1.15 in 96 

Abramowitz and Stegun) can be used to extend the argument of the Gamma function to the whole complex 97 

plane that is not covered in eqn (S4); i.e., use  98 

Γ(𝑥 + 1) = 𝑥Γ(𝑥)                                                                (S5) 99 

for ℝ(𝑥) ≤ 0. 100 

With eqn (S1) to (S5), the Hankel function of the first kind that represents the waves propagating 101 

along the positive r-direction can be obtained by the relationship with the Bessel functions: 102 

𝐻𝜈
(1)(𝑧) = 𝐽𝜈(𝑧) + 𝑖𝑌𝜈(𝑧)                                                          (S6) 103 

Hence, all required functions are defined. 104 

 To validate the two aforementioned approximations of Gamma function (Upper Incomplete 105 

Gamma Function igamma in MATLAB function library and the program created by Godfrey), Bessel 106 

functions Jν(z) and Yν(z) with different complex orders ν and real arguments z were calculated and compared 107 

to the values reported in a reference (K. L. J. Fong, A Study of Curvature Effects on Guided Elastic Waves, 108 

Ph.D. thesis of Imperial College London, pp. 148). The comparison is demonstrated in Table S1, and the 109 

results show both approximations have at least 10 digits of precision compared to the reference. 110 

  111 

http://my.fit.edu/~gabdo/paulbio.html
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Jν(z) with ν = 30 + 50i 

z Reference MATLAB igamma Godfrey 

70 −5.93644837574622 × 1023 

−6.21989546226278 × 1023i 

−5.93644837574486 × 1023 

−6.21989546226806 × 1023i 

−5.93644837574481 × 1023 

−6.21989546226825 × 1023i 

31 9.38713109974277 × 1015 

−2.04157148369613 × 1015i 

9.38713109974298 × 1015 

−2.04157148369613 × 1015i 

9.38713109974313 × 1015 

−2.04157148369597 × 1015i 

30 −1.95359736621662 × 1015 

−3.54953866450241 × 1015i 

−1.95359736621663 × 1015 

−3.54953866450250 × 1015i 

−1.95359736621659 × 1015 

−3.54953866450258 × 1015i 

10 −102.750648203869 

+21.6604279770704i 

−102.750648203871 

+21.6604279770701i 

−102.750648203873 

+21.6604279770684i 

Yν(z) with ν = 30 + 50i 

z Reference MATLAB igamma Godfrey 

70 −6.21989546226278 × 1023 

+5.93644837574622 × 1023i 

−6.21989546226806 × 1023 

+5.93644837574486 × 1023i 

−6.21989546226825 × 1023 

+5.93644837574481 × 1023i 

31 −2.04157148369613 × 1015 

−9.38713109974277 × 1015i 

−2.04157148369613 × 1015 

−9.38713109974298 × 1015i 

−2.04157148369597 × 1015 

−9.38713109974313 × 1015i 

30 −3.54953866450241 × 1015 

+1.95359736621662 × 1015i 

−3.54953866450250 × 1015 

+1.95359736621663 × 1015i 

−3.54953866450258 × 1015 

+1.95359736621659 × 1015i 

10 21.6604626085221 

+102.750609923256i 

21.6604626098798 

+102.750609922708i 

21.6604626098782 

+102.750609922709 

Table S1: Numerical values of Bessel functions Jν(z) and Yν(z) calculated by three different algorithms. 112 
Bolded numbers indicate the consistent digits with the reference. 113 

 114 


