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1 Extracting the bacterial density
Under our experimental conditions, the image pixel intensity vari-
ance σ2

0 , is proportional to the cell density. Since bacteria show
up phase dark, one might expect the average intensity to be vary
linearly with the cell number density. However, the phase-dark
image of each bacterium is surrounded by a rather wide brighter
halo. The difference in the average intensity between an image
with and without a bacterium is therefore close to zero, and diffi-
cult to extract above the background noise. We find, however, that
the variance of the image intensity in the dilute limit has no such
issue, and increases linearly with the number of bacteria1.

For different areas of our experimental images, Fig. 1, we show
the normalized variance σ2

0 (t)/σ2
0 (0) as a function of time, Fig. 2).

The areas correspond to the centre areas of the static and dynamic
patterns (squares of 110µm×110µm), as well as a 21 µm-thick bor-
der of the experimental image, where the bacteria are not illumi-
nated by green light and so do not swim. We analysed an area
in the centre of each pattern that is slightly larger than the actual
central dark square to ensure that the whole region of interest is
included.

The dynamic and static areas behave as discussed in the main
text. However, the normalized variance from the border shows a
reduction from 1.0 to 0.8 within a few minutes, Fig. 2 (•). The
border is populated by non-swimmers, so that we do not expect
the cell concentration to change within this time scale. Indeed,
visual inspection of the images showed no decrease in the border
cell density. Using borders of thickness 14 µm and 7 µm produced
exactly the same result. The observed reduction of the normalized
variance in the border is due to a gradual defocussing of the image,
which was noticeable to direct visual inspection. Figure 3 shows
the normalized variance of an image of a constant density of non-
swimming bacteria at various degree of defocussing (where z= 0 is
where the image is in focus). We find that a drift of about 4 microns
is enough to produce the degree of reduction in the normalized
variance seen in the border data in Fig. 2.

We correct for this effect by normalising the variance of the pat-
terns by the change in variance of the border at each timepoint.
The variance used in the main text then becomes:

σ
2(t) = σ

2
0 (t)[σ

2
Border(t)/σ

2
Border(0)]

−1. (1)

In any case, this correction to the concentrations is minor and does
not affect any substantive points or conclusions set out in the main
text.

2 Differential Dynamic Microscopy analysis
The swimming speed of the bacteria under green illumination was
quantified with differential dynamic microscopy (DDM), a high-
throughput technique used for measuring the motility of swim-
ming microorganisms2–4. Acquiring movies as described in the
main text (10x Phase Contrast, 50 frames per second), we calcu-
lated the differential image correlation function g(q,τ), which is
the power spectrum of the difference between pairs of images de-
layed by time τ, with q the spatial frequency defining the length
scale of interest L = 2π/q. For isotropic motion and appropriate
imaging conditions3,4, g(q,τ) is related to the intermediate scat-
tering function f (q,τ), which is the qth Fourier component of the

Figure 1 Image of the experiment at t = 400s. The variances of the high-
lighted areas as functions of time are shown in Fig. S2. Other patterns in
the image correspond to different speeds and conditions discussed in the
main text.

density temporal autocorrelation function, via:

g(q,τ) = A (q)[1− f (q,τ)]+B(q) (2)

Here B(q) relates to experimental setup noise and A (q) is the
signal amplitude. Fitting to a suitable swimming model for E. coli,
we obtain the average speed, the width of the speed distribution,
the fraction of non-motile bacteria and their diffusion coefficient.

DDM allows us to extract bacterial swimming speeds at 1 s inter-
vals1. By alternately switching the light on and off, Fig. 4, we de-
termined two separate time scales (τA and τB) with which our cells
adapt to the current illumination level (see main text equations (4)
and (5) respectively). Fitting the observed time-dependent speed
to

v̄(t) = ABv0, (3)

Ȧ = (I−A)/τA, (4)

Ḃ = (I−B)/τB, (5)

where I is the state of illumination (1 for on and 0 for off)
(compare main text equations (2), (4) and (5)), we obtained
v0 = 9.2µms−1 for the speed of the bacteria under steady-state il-
lumination, A(t = 0)=1, B(t = 0)=0.926, τA=1.6 s and τB=100 s.

Note that the fitted saturation speed here is different from that
in the main text because of the higher illumination used in these
measurements. We assume that τA,B are not dependent on the sat-
uration speed, which is justified a posteriori by the fact that these
values of τA,B are found to reproduce the data in the main text
using our 2D simulations. The independence of the short time,
τA from the starting intensity has also been explicitly validated in
previous experiments1.

Physically, the short τA is determined by the charge/discharge
time of the equivalent membrane capacitor and resistor, while the
longer τB is determined by the time to reassemble/dissassemble
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Figure 2 Normalized variance as a function of time for three different
areas in the experimental images corresponding to the dynamic and static
areas in Fig. 1 of the main text, as well as the image border area where
bacteria are not illuminated.

Figure 3 Normalized variance of a non-swimming bacteria sample (optical
density ≈ 5) as a function of z, the focal distance from the bottom coverslip.

stator units for the rotary flagella motors (see1 and references
therein).

3 Rotational Diffusion through tracking
To extract the rotational diffusion coefficient of our bacteria dur-
ing our experiments, we tracked the swimming E. coli and cal-
culated their velocity autocorrelation function. We focussed on a
single static light pattern, where the bacteria in the lit region be-
came dilute enough to track. The original images required some
pre-processing however, to exclude non-swimmers from the track-
ing. A moving 2 s average is subtracted from each image before
a centre-of-mass tracking algorithm is implemented, Fig. 5 (a, b,
c). The tracks from a total of 30 movies of 20 s each at 50 frames
per second are then analysed. Using only those tracks in the lit
area of the pattern of 3 s duration or longer, we calculated the ve-
locity autocorrelation functions and fit the average with a single
exponential decay

〈v(0)v(t)〉=V 2 exp(−DRt). (6)

Figure 4 The response of the bacterial swimming speed to on-off cycles of
illumination (white background = on, grey background = off). Filled circles
= data; line = fit to equations (3)-(5).

Here V is the tracked bacteria speed (V ≈ 3.3µms−1 in the an-
nulus) and the rotational diffusion coefficient was found to be
DR = 0.05±0.01s−1, see SI Fig.5d. Corroborating the tracking mea-
surments, DDM of the bacteria in the annulus produced vannulus =
2.8±0.3µms−1.

4 1-Dimensional Theory
We here calculate the mean speeds of left and right going bacteria
in a moving, 1D, periodic light field of infinite extent. These cal-
culations are equivalent to those in ref.5. In this model, bacteria
swim either right (+ve x-direction) or left, at a speed v in the light,
and v′ = 0 in the dark. They undergo temporally uncorrelated tum-
bles with a rate k, with equal probability into either direction. A
pattern of light and dark bands is applied (the light field), which
moves at speed u to the right. In a frame moving with this light
field, there are periodic boundary conditions at x = 0 and x = Λ,
and the region 0 ≤ x < αΛ is light, with αΛ ≤ x < Λ being dark.
The Fokker-Planck equation for this system is

∂ f±(x)
∂ t

=− [±v(x)−u]
∂ f±(x)

∂x
+

k
2
[ f∓(x)− f±(x)] , (7)

where the position dependent speed V (x) is v or 0 in the light and
dark respectively. The first term accounts for self-propulsion in
either direction, and the second term for tumbling. Note that tum-
bling may result in no change of direction, which accounts for the
factor of 1/2.

Eq. (7) applies at all points apart from x = 0 and x = αΛ, where
there are specific boundary conditions. For u > v, the boundary
condition at each boundary consists in simply equating the fluxes

j± = [±V (x)−u] f±(x) , (8)

on either side of the boundary. For u < v, the situation is rather
more involved. Right-going bacteria which reach the light-dark
boundary at x=αΛ become trapped there, moving at speed u, until
they tumble away. This means there is a δ -function concentration
F+ of right-going bacteria at this boundary. The amplitude F+ of
this peak couples to the left-and-right fluxes via modified boundary
conditions:

j±(x→ αΛ|B)− j±(x→ αΛ|D) =±
k
2

F+ , (9)
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Figure 5 Extraction of the rotational diffusion coefficient of the bacte-
ria (DR). (a) The original phase-contrast image (b) The image after sub-
traction of a 2 s moving average (c) Superposition of the bacterial tracks
over 2 s (d) The experimental velocity autocorrelation function (solid line),
showing a fitted single exponential decay and a fit (dashed line), giving a
DR = 0.05±0.01 s−1.

which accounts for the entry of right-going bacteria into the
boundary from both sides, and the transformation of trapped right-
going into free left-going bacteria by tumbling. Here, the argu-
ments in brackets indicate the limit is to be taken approaching the
boundary at αΛ either from the bright (B) or dark (D) side. At
the other boundary we have f+(0) = 0, since no right-going bac-
teria can reach this boundary (they move too slowly in the dark,
and too quickly in the light), whereas there is the usual balance of
fluxes for the left-going bacteria here.

A final condition is to fix the integrated densities of left and
rightgoing bacteria to 1 (or some other arbitrary value) i.e.,

1 = F++
∫

Λ

0
f+(x)dx =

∫
Λ

0
f−(x)dx . (10)

Setting Eq. (7) equal to zero then enables a steady-state solution
for the bacterial density profiles f±(x) to be found, after some alge-
bra; these are piecewise sums of exponentials. From these density
profiles, the mean speeds of rightgoing 〈v+〉 and leftgoing 〈v−〉 bac-
teria are obtained by integrating the speed over the whole domain
in the lab frame

〈v+〉= uF++ v
∫

αΛ

0
f+(x)dx , (11)

〈v−〉= v
∫

αΛ

0
f−(x)dx . (12)

The total mean speed 〈v〉 = (〈v+〉− 〈v−〉)/2 is the quantity calcu-
lated in ref.5. The form of the mean speeds for some typical pa-
rameter values are shown in Fig. 6.

Defining dimensionless speeds by an overbar, 〈v̄±〉= 〈v±〉/u etc.,
these calculations yield

〈v̄±〉=
W±+ακγ−1

W +κ
, (13)

Figure 6 The mean speed of right and left going bacteria as a function of
γ (changing v) for the same parameter space as in the main text (fig. 4a)
with α = 0.5 and k = 0.1 s−1.

where we define the parameters W± and W as

W+ =


2(1− e−Q′)− γ−3(1+2γ)(1− γ)2(1− eQ) , u < v ,

2γ−3 sinh(Q′/2)sinh(Q/2)
sinh(Q′/2+Q/2)

(1+ γ) , u≥ v .

(14)

W− =


−γ−3(1− γ)2(1− eQ) , u < v ,

2γ−3 sinh(Q′/2)sinh(Q/2)
sinh(Q′/2+Q/2)

(1− γ) , u≥ v .
(15)

W =


(1− e−Q′)− (γ−1−1)2(1− eQ) , u < v ,

2γ−2 sinh(Q′/2)sinh(Q/2)
sinh(Q′/2+Q/2)

, u≥ v ,
(16)

with Q = κα/(1− γ−2) and Q′ = κ(1−α), where γ = u/v and κ =
kΛ/u.

For the net speed we obtain (as in Ref.5, but generalised to an
arbitrary light-dark fraction and then calculated for zero swimming
in the dark)

〈v̄〉= W
W +κ

. (17)
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