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In this document we provide further details on two main aspects: first, we detail our
considerations on the physical properties of spherical MH particles used experimentally
for the creation of HSMEs and discuss how they support our modeling assumptions;
second, we present technical details of the bead-spring model and its corresponding
simulation protocol.

S1 Considerations on the magneto-mechanical
properties of spherical MH particles embedded in an
elastic matrix

Typical spherical MH microparticles, as the ones used in HSME samples of Reference
[61] of the main manuscript (Magnequench NdFeB), are actually a solid clot of 105–
106 nanograins whose magnetization follows the Stoner-Wohlfarth scenario. They have
typical coercive forces of at least 500–700 kA/m (7–9 kOe) and, after being magnetized

by an initial external strong field, ~Hi, a typical remanence of around MR ≈ 400–500
kA/m. Therefore, they behave effectively as monodomain particles with magnetic
moment ‖~µh‖ = MRV , proportional to their volume, V , so that they can be repre-
sented as spheres with a point magnetic dipole ~µh located at their centers. In HSME
materials, the magnetization of the sample takes place after all solid particles have
been embedded into the polymer matrix. Due to the large amount of nanograins with
randomly oriented easy axes forming each embedded MH microparticle, its effective
dipole moment essentially points in the direction of the initial magnetizing field, ~Hi.
That is, all MH particles in the sample have their magnetic moments oriented in the
same direction.
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Let us examine the response of one of the embedded MH magnetized particles when
exposed to a homogeneous external field, H0, antiparallel to the orientation of its
magnetic dipole. We assume that such field is weaker than the coercive force necessary
to invert the orientation of the dipole. In order to determine whether the whole particle
will rotate to align with the field or not, we take the Hooke torsion expression to
represent the elastic energy associated to such rotation:

U = µH0 cos θ + 3GV θ2, (1)

where θ is the rotation angle from the initial orientation of the MH particle (that
is, θ = 0 for no rotation) and G is the shear modulus of the polymer matrix. Note
that the sign of the first term is positive because the field is antiparallel to the actual
direction of the magnetic moment of the particle.

Expanding (1) for small angular deviations, one gets

U ≈MRV H0

(
1− θ2

2
+
θ4

24

)
+ 3GV θ2. (2)

Differentiation of this elastic energy with respect to θ yields

∂U

∂θ
≈ −MRV H0θ +

MRV H0

6
θ3 + 6GV θ, (3)

so that the condition for equilibrium between magnetic and elastic components reads

θ

(
6GV −MRV H0 +

MRV H0

6
θ2
)

= 0. (4)

This equation has three roots. One is θ = 0 (no rotation), whereas two others are

θ = ±
√

6 (1− 6G/MRH0). (5)

The sign in (5) is irrelevant, what matters is the non-negativity of the expression under
the radical. It requires

H ≥ Hr ≡ 6G/MR. (6)

Thus, we arrive at the conclusion that at fields lower than Hr the particle is in a
stable state and does not rotate. Note that the point H0 = Hr is a bifurcation: here
all the roots of equation (4) coincide and equal zero; at higher fields, angle gradually
increases, i.e., the particle begins to rotate.

For a dimensional estimate of the critical field Hr, we set G = 105 dyn/cm2 =
10 kPa, that corresponds to a very soft matrix, and take the same value for MR as
above:

Hr ≈ 6 · 105/400 ≈ 1.5 kOe = 120 kA/m. (7)

This is not a very strong field but, still, it is by no means a weak one.
With respect to the essence of our paper, the most important question is whether

the passage from prolate to oblate aspect ratio of the MS shell occurs at fields weaker
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than Hr, |H0| < |Hr|. Otherwise, it would mean that the effect we observe in our
models is unphysical. To find that, we convert Hr into our system of reduced units

H̃r = Hr/
√
G ≈ −1500/

√
105 ≈ −4.7. (8)

Comparison of this value with the fields sampled in Figure 6 of the main text proves
that, under the assumptions made (and they are not at all unreal), the predicted effect
should be observable. In addition, experimental evidence supports this conclusion. Let
us look at Figure 4b from Reference [YY] in the main text. As it shows, in the interval
[100,0] kA/m the magnetization curves of very soft composites (sample S2, Young
modulus 36 kPa, shear modulus 12 kPa, cf. our 10 kPa) and that of the entirely solid
composite (epoxy, shear modulus many orders of magnitude greater) are very close.
This means that the compliance of the matrix does not have any significant effect on
the behavior of samples under moderately negative fields, provided that the compared
materials had been initially magnetized by the same field.

S2 Details of the MD simulation protocol

Note that all magnitudes mentioned below are expressed in the system of reduced
units introduced in the main text.

In Langevin dynamics simulations, the translational and rotational equations of
motion acting on each particle i are defined as

mi(d~vi/dt) = ~Fi − ΓT~vi + ~ξi,T,

~Ii · (d~ωi/dt) = ~τi − ΓR~ωi + ~ξi,R,
(9)

where ~Fi and ~τi are the total force and torque, mi is the particle mass and ~Ii its
inertia tensor, ΓT and ΓR the translational and rotational friction constants, and ~ξi,T
and ~ξi,R are a Gaussian random force and torque, respectively, fulfilling the usual
fluctuation-dissipation rules,

〈ξ(t)〉 = 0,

〈ξi(t)ξj(t′)〉 = 6TΓδijδ(t− t′).
(10)

Since in this study we are not interested in the system dynamics but only on static
structural properties after magnetomechanical relaxation, the values of the friction
constants can be chosen arbitrarily, as long as they provide a fast system relaxation.
In general, we use ΓR = ΓT/3.

In order to place Ns MS particles inside a shell around the central MH particle, we
set a temporary steric spherical wall of radius dh concentric to the latter. The MS
particles are then allocated randomly with respect to the MH one at center-to-center
distances dh/2 < r < dh. This random initial configuration is relaxed by performing
3 damped dynamics simulation cycles of 2 · 103 integration steps each, using as time
step δt = 5 · 10−3, at T = 0.1. In such cycles, only steric interaction are considered,
ΓT is decreased from 10 to 1 and the maximum force allowed in the system is slowly
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increased. After this, another cycle of 104 damped integation steps is performed under
T = 0.001, ΓT = 10 and no force limitation.

Once the initial confined relaxation is completed, the temporary spherical shell is
removed and the crosslinking procedure takes place according to the positions of the
MS particles. After the spring network is defined, three additional simulation cycles
are carried out. The first consists of 104 integration steps, with T = 0.01 and ΓT = 15.
Then, dipole-dipole interactions start to be taken into account and a second cycle of
104 integration steps at T = 0.001 and ΓT = 10 is performed. Finally, the value of the
external applied is set and a final integration of 106 steps, with ΓT = 10, is completed.
Only the final configuration from each independent run is analyzed.

S3 Distribution of spring elastic constants

In our spherical shell network system, the assignation to each spring of an elastic
constant proportional to its equilibrium length provides a rather linear distribution of
values, as can be seen in the example of Figure S3.1.
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Figure S3.1: Example of distribution of elastic constants used in a simulation run with
k̄ = 0.4.

S4 Fitting of the elastic properties of the simulation
model

Figure S4.1 shows some examples of the comparison performed between the results of
continuum and bead-spring models in order to fit the average spring elastic constant,
k̄, in the latter. Note that k̄ = 0.4 provides the best match.
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Figure S4.1: Longitudinal deformation parameter, ∆c∗, as a function of the applied
field, H̃0, obtained when the MH particle is not magnetized, µ̃h = 0:
solid line corresponds to the continuum model, symbols to simulation
results of the bead-spring model under different values of the average
spring constant, k̄.
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