Electronic Supplementary Information: Active nematicisotropic interfaces in channels

Rodrigo C. V. Coelho, ${ }^{* a, b}$ Nuno A. M. Araújo, ${ }^{a, b}$ and Margarida M. Telo da Gama ${ }^{a, b}$

We describe the details of the multi-relaxation-time lattice Boltzmann method used in the simulations and the parameters of the systems illustrated in the videos in the ESI.

1 Description of the videos

The three videos illustrate the results of simulations running up to $t=500000$ with interval between the frames of $\Delta t=5000$. The parameters and initial condiitons are described in Sec. 3.1 of the paper.
video1.gif. Interfacial dancing state for homeotropic anchoring (fig. 3C of the paper). Here $\zeta=0.002, \xi=0.7$.
video2.gif. Interfacial dancing state for planar anchoring (fig. 12C of the paper). Here $\zeta=0.0025, \xi=0.5$.
video3.gif. Interfacial instability at a closed channel with nematic left boundary and isotropic right boundary (fig. 13 D-G). No slip boundary conditions are applied at the four walls. Here $\zeta=-0.002, \xi=0.5$.

2 The MRT collision operator

As described in the paper, the lattice-Boltzmann equation with the MRT collistion operator reads as follows:

$$
\begin{equation*}
f_{i}\left(\mathbf{x}+\mathbf{c}_{i} \Delta t, t+\Delta t\right)-f_{i}(\mathbf{x}, t)=\mathbf{M}^{-1} \mathbf{R} \mathbf{M}\left[f_{i}(\mathbf{x}, t)-f_{i}^{e q}(\mathbf{x}, t)\right] \Delta t+\mathscr{S}_{i}, \tag{1}
\end{equation*}
$$

where the transformation matrix \mathbf{M} transforms the populations space into the moments space, the relaxation matrix \mathbf{R} includes the relaxation rates of the individual moments and \mathscr{S}_{i} is the souce term. In the simplest form (first order accurate), the source term is $\mathscr{S}_{i}=3 w_{i} \mathbf{F} \cdot \mathbf{c}_{i}$. In our simulations, we projected the Guo's forcing term in the moments space using the matrix \mathbf{M}, similarly as done for the populations. This procedure is described in Chapter 10 of Ref. ${ }^{11}$. For an implementation of the MRT in the D3Q19 lattice in C++, we recommend Palabos ${ }^{22}$. The matrices and vectors are given below.

The velocity vetors for the D3Q19 are given by:

$$
\begin{aligned}
& c_{x}=[0,-1,0,0,-1,-1,-1,-1,0,0,1,0,0,1,1,1,1,0,0] \\
& c_{y}=[0,0,-1,0,-1,1,0,0,-1,-1,0,1,0,1,-1,0,0,1,1] \\
& c_{z}=[0,0,0,-1,0,0,-1,1,-1,1,0,0,1,0,0,1,-1,1,-1] .
\end{aligned}
$$

The discrete weight associated with each vector depends on its length: $w(0)=1 / 3, w(1)=1 / 18$ and $w(2)=1 / 36$. The transformation

[^0]matrix is:
\[

\mathbf{M}=\left[$$
\begin{array}{ccccccccccccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
-30 & -11 & -11 & -11 & 8 & 8 & 8 & 8 & 8 & 8 & -11 & -11 & -11 & 8 & 8 & 8 & 8 & 8 & 8 \\
12 & -4 & -4 & -4 & 1 & 1 & 1 & 1 & 1 & 1 & -4 & -4 & -4 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & -1 & 0 & 0 & -1 & -1 & -1 & -1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 4 & 0 & 0 & -1 & -1 & -1 & -1 & 0 & 0 & -4 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & -1 & 1 & 0 & 0 & -1 & -1 & 0 & 1 & 0 & 1 & -1 & 0 & 0 & 1 & 1 \\
0 & 0 & 4 & 0 & -1 & 1 & 0 & 0 & -1 & -1 & 0 & -4 & 0 & 1 & -1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & -1 & 0 & 0 & -1 & 1 & -1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & -1 & 1 & -1 \\
0 & 0 & 0 & 4 & 0 & 0 & -1 & 1 & -1 & 1 & 0 & 0 & -4 & 0 & 0 & 1 & -1 & 1 & -1 \\
0 & 2 & -1 & -1 & 1 & 1 & 1 & 1 & -2 & -2 & 2 & -1 & -1 & 1 & 1 & 1 & 1 & -2 & -2 \\
0 & -4 & 2 & 2 & 1 & 1 & 1 & 1 & -2 & -2 & -4 & 2 & 2 & 1 & 1 & 1 & 1 & -2 & -2 \\
0 & 0 & 1 & -1 & 1 & 1 & -1 & -1 & 0 & 0 & 0 & 1 & -1 & 1 & 1 & -1 & -1 & 0 & 0 \\
0 & 0 & -2 & 2 & 1 & 1 & -1 & -1 & 0 & 0 & 0 & -2 & 2 & 1 & 1 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & -1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & -1 & -1 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & -1 & 1
\end{array}
$$\right]
\]

The equilibrium moments are:

$$
\mathbf{m}^{\mathbf{e q}}=\left[\begin{array}{c}
\rho \tag{3}\\
\rho\left(-11+19 u_{x}^{2}+19 u_{y}^{2}+19 u_{z}^{2}\right) \\
-\frac{1}{2} \rho\left(-6+11 u_{x}^{2}+11 u_{y}^{2}+11 u_{z}^{2}\right) \\
\rho u_{x} \\
-\frac{2}{3} \rho u_{x} \\
\rho u_{y} \\
-\frac{2}{3} \rho u_{y} \\
\rho u_{z} \\
-\frac{2}{3} \rho u_{z} \\
\rho\left(2 u_{x}^{2}-u_{y}^{2}-u_{z}^{2}\right) \\
\frac{1}{2} \rho\left(-2 u_{x}^{2}+u_{y}^{2}+u_{z}^{2}\right) \\
\rho\left(u_{y}^{2}-u_{z}^{2}\right) \\
\frac{1}{2} \rho\left(-u_{y}^{2}+u_{z}^{2}\right) \\
\rho u_{x} u_{y} \\
\rho u_{y} u_{z} \\
\rho u_{x} u_{z} \\
0 \\
0 \\
0
\end{array}\right]
$$

And the force term in the moment space is $\mathbf{M F}^{\prime}=(\mathbf{I}-\mathbf{R} / 2) \mathbf{S}$, where:

$$
\mathbf{S}=\left[\begin{array}{c}
0 \tag{4}\\
38\left(F_{x} u_{x}+F_{y} u_{y}+F_{z} u_{z}\right) \\
-11\left(F_{x} u_{x}+F_{y} u_{y}+F_{z} u_{z}\right) \\
F_{x} \\
-\frac{2}{3} F_{x} \\
F_{y} \\
-\frac{2}{3} F_{y} \\
F_{z} \\
-\frac{2}{3} F_{z} \\
2\left(2 F_{x} u_{x}-F_{y} u_{y}-F_{z} u_{z}\right) \\
\left(-2 F_{x} u_{x}+F_{y} u_{y}+F_{z} u_{z}\right) \\
2\left(F_{y} u_{y}-F_{z} u_{z}\right) \\
-F_{y} u_{y}+F_{z} u_{z} \\
F_{y} u_{x}+F_{x} u_{y} \\
F_{z} u_{y}+F_{y} u_{z} \\
F_{z} u_{x}+F_{x} u_{z} \\
0 \\
0 \\
0
\end{array}\right]
$$

We use the relaxation rates of Ref. ${ }^{[3}$, which have been shown to reduce significantly the spurious velocities in a multiphase pseudopotential model for simple fluids.

$$
\begin{equation*}
\mathbf{R}=\operatorname{diag}\left(\omega_{0}, \omega_{1}, \ldots, \omega_{18}\right) \tag{5}
\end{equation*}
$$

where: $\omega_{0}=\omega_{3}=\omega_{5}=\omega_{7}=\omega_{10}=\omega_{12}=\omega_{16}=\omega_{17}=\omega_{18}=1$ and $\omega_{1}=\omega_{2}=\omega_{4}=\omega_{6}=\omega_{8}=1.1$. The parameters $\omega_{9}=\omega_{13}=\omega_{14}=\omega_{15}$ are related to the kinematic viscosity: $v=c_{s}^{2}\left(\frac{1}{\omega_{9}}-\frac{1}{2}\right)$, while the ω_{1} is related to the bulk viscosity: $\eta_{B}=\rho c_{s}^{2}\left(\frac{1}{\omega_{1}}-\frac{1}{2}\right)-\frac{v \rho}{3}$.

Notes and references

1 T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva and E. M. Viggen, The Lattice Boltzmann Method - Principles and Practice, Springer International Publishing, 2016.
2 Palabos, http://www.palabos.org
3 S. Ammar, G. Pernaudat and J.-Y. Trépanier, Journal of Computational Physics, 2017, 343, 73 - 91.

[^0]: ${ }^{a}$ Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal; E-mail: rcvcoelho@fc.ul.pt
 ${ }^{b}$ Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal.

