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We describe the details of the multi-relaxation-time lattice Boltzmann method used in the simulations and the
parameters of the systems illustrated in the videos in the ESI.

1 Description of the videos

The three videos illustrate the results of simulations running up to t = 500000 with interval between the frames of ∆t = 5000. The
parameters and initial condiitons are described in Sec. 3.1 of the paper.

video1.gif. Interfacial dancing state for homeotropic anchoring (fig. 3C of the paper). Here ζ = 0.002, ξ = 0.7.

video2.gif. Interfacial dancing state for planar anchoring (fig. 12C of the paper). Here ζ = 0.0025, ξ = 0.5.

video3.gif. Interfacial instability at a closed channel with nematic left boundary and isotropic right boundary (fig. 13 D-G). No slip
boundary conditions are applied at the four walls. Here ζ =−0.002, ξ = 0.5.

2 The MRT collision operator

As described in the paper, the lattice-Boltzmann equation with the MRT collistion operator reads as follows:

fi(x+ ci∆t, t +∆t)− fi(x, t) = M−1RM[ fi(x, t)− f eq
i (x, t)]∆t +Si, (1)

where the transformation matrix M transforms the populations space into the moments space, the relaxation matrix R includes the
relaxation rates of the individual moments and Si is the souce term. In the simplest form (first order accurate), the source term is
Si = 3wiF · ci. In our simulations, we projected the Guo’s forcing term in the moments space using the matrix M, similarly as done for
the populations. This procedure is described in Chapter 10 of Ref.1. For an implementation of the MRT in the D3Q19 lattice in C++, we
recommend Palabos2. The matrices and vectors are given below.

The velocity vetors for the D3Q19 are given by:

cx = [0,−1,0,0,−1,−1,−1,−1,0,0,1,0,0,1,1,1,1,0,0]

cy = [0,0,−1,0,−1,1,0,0,−1,−1,0,1,0,1,−1,0,0,1,1]

cz = [0,0,0,−1,0,0,−1,1,−1,1,0,0,1,0,0,1,−1,1,−1].

The discrete weight associated with each vector depends on its length: w(0) = 1/3, w(1) = 1/18 and w(2) = 1/36. The transformation
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matrix is:

M =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−30 −11 −11 −11 8 8 8 8 8 8 −11 −11 −11 8 8 8 8 8 8
12 −4 −4 −4 1 1 1 1 1 1 −4 −4 −4 1 1 1 1 1 1
0 −1 0 0 −1 −1 −1 −1 0 0 1 0 0 1 1 1 1 0 0
0 4 0 0 −1 −1 −1 −1 0 0 −4 0 0 1 1 1 1 0 0
0 0 −1 0 −1 1 0 0 −1 −1 0 1 0 1 −1 0 0 1 1
0 0 4 0 −1 1 0 0 −1 −1 0 −4 0 1 −1 0 0 1 1
0 0 0 −1 0 0 −1 1 −1 1 0 0 1 0 0 1 −1 1 −1
0 0 0 4 0 0 −1 1 −1 1 0 0 −4 0 0 1 −1 1 −1
0 2 −1 −1 1 1 1 1 −2 −2 2 −1 −1 1 1 1 1 −2 −2
0 −4 2 2 1 1 1 1 −2 −2 −4 2 2 1 1 1 1 −2 −2
0 0 1 −1 1 1 −1 −1 0 0 0 1 −1 1 1 −1 −1 0 0
0 0 −2 2 1 1 −1 −1 0 0 0 −2 2 1 1 −1 −1 0 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 −1 −1 1 1 0 0 0 0 0 1 1 −1 −1 0 0
0 0 0 0 1 −1 0 0 −1 −1 0 0 0 −1 1 0 0 1 1
0 0 0 0 0 0 −1 1 1 −1 0 0 0 0 0 1 −1 −1 1



(2)

The equilibrium moments are:
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And the force term in the moment space is MF′ = (I−R/2)S, where:

S =
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(4)

We use the relaxation rates of Ref.3, which have been shown to reduce significantly the spurious velocities in a multiphase pseu-
dopotential model for simple fluids.

R = diag(ω0,ω1, . . . ,ω18) (5)

where: ω0 = ω3 = ω5 = ω7 = ω10 = ω12 = ω16 = ω17 = ω18 = 1 and ω1 = ω2 = ω4 = ω6 = ω8 = 1.1. The parameters ω9 = ω13 = ω14 = ω15

are related to the kinematic viscosity: ν = c2
s
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)
, while the ω1 is related to the bulk viscosity: ηB = ρc2
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− νρ

3 .
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