
Note S1: Equation 1  

Equation 1 from the manuscript is the answer to a simple question: if a fast moving wavefront is 

catching up with a slower moving one, how long will it take them to intersect? This intersection is 

the point at which these wavefronts will constructively interfere. Because the Huygens-Fresnel 

wavelet  travels at a velocity of 𝑐𝑙  (~1500m/s, water), which is less than that of the SAW-coupled 

fluid wavefront travelling at 𝑐𝑠 (~4000m/s, lithium niobate), this intersection will occur when the 

SAW-coupled fluid wavefront overtakes the Huygens-Fresnel wavelet. We term this distance 𝜆𝜃, or 

the distance between the effective source of a fluid wavelet (a channel/fluid interface, for example) 

and the point at which a SAW-coupled fluid wavefront interferes with it.  

 

 

Looking at this in a simplified case where both wavefronts are travelling in the same direction, we 

can solve for 𝜆𝜃 with the knowledge that they intercept at time 𝑡 from the initiation of the fluid 

wavelet. 

 

Since 𝑑 =  𝜆𝜃 + 𝜆SAW when both waves are travelling in the same direction 

 

and grouping all 𝜆𝜃 terms 

 

then solving for 𝜆𝜃 
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we have an expression for 𝜆𝜃 in terms of the known quantities 𝑐𝑠, 𝑐𝑙 and 𝜆SAW. Since the fluid 

wavelength is given by 𝜆l =
𝑐𝑙

𝑐𝑠
𝜆SAW, this expression becomes 

 

thus recovering the result from Devendran et al (2017)[1], where a channel wall was placed in the 

path of a SAW with wavefronts parallel to said wall. In this case, the 𝜃 in 𝜆𝜃 is 0° because the SAW 

wavefront and Huygens-Fresnel wavelet are propagating in the same direction. The present work, 

however, seeks to generalize this model for any orientation of the SAW wavefronts with respect to 

the source of the Huygens-Fresnel wavelets (such as a channel wall). At the limit where the radius of 

curvature approaches zero, as in Rayleigh scattering, the wavelets take the form of expanding 

circular wavefronts. Calculating the distance between the wavelet source and its intersection with a 

SAW-coupled wavefront for a given value of 𝜃 must then take into account that the velocity 

component of the fluid wavefronts in the +x direction (𝑐𝑙
↑), which will be decrease with increasing 𝜃. 

 

 

The above diagram shows this scenario expressed in terms of either (a) velocity or (b) distance. For a 

time period equal to 𝑡 =
𝑑

𝑐𝑠
=

𝜆𝜃

𝑐𝑙
=

𝜆𝜃
↑

𝑐𝑙
↑ , , the length of the (a) velocity vectors and (b) distances are 

equal. The value of 𝑐𝑙
↑ is given by 

Substituting this value into Equation S4, we arrive at an expression for the vertical (+x direction) 

component of 𝜆𝜃 

 

and noting that  

 

we arrive at Equation 1 from the text, with 
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Eqn. S5 
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This expression is valid for the case where the second SAW wavefront intersects with the first fluid 

wavelet at the same time the third SAW wavefront arrives at the origin of the first fluid wavelet. This 

expression is valid when the effective radius of curvature for a channel wall approaches zero (𝑅 <

𝜆), as in the case of a pillar or post smaller than the acoustic wavelength.  In the case of a flat 

channel wall, however, we see that this is not the case in examining Figure 2b from the text in detail 

below: the intersection of the SAW wavefront along the channel wall is displaced from the source of 

the spherical wavefronts that ultimately intersected with that wavefront. 

 

Because of this displacement, the time to fluid and SAW wavefront intersection (as described 

previously in Figure S1 and Equation S1) will change, and requires the consideration of a separate 

model to determine the value of 𝜆𝜃 for flat channel walls. 

Note S2: Equation 2  

A travelling SAW produces a fluid wavefront that propagates at cs when viewed in the plane of the 

transducer, whilst the intersection of this wavefront with a channel feature (in this case a flat wall) 

generates Huygens-Fresnel wavelets which give rise to a wavefront that that propagates at an angle 

θI to the normal vector of the wall. The interference of these wavefronts produces a combined field 

with intersection spacing 𝜆𝜃, as illustrated in S4. 

Important parameters here include the distance between SAW wavefronts (𝜆SAW), the wavelength 

in the fluid (𝜆𝑙) and the angle of the channel wall relative to the SAW propagation direction 𝜃.  
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The value of θI is a function of the angle at which the SAW wavefronts intersect the channel wall; 

the velocity at which the wavefront travels along the axis of the wall is minimized (and equal to 𝑐𝑠) 

when 𝜃 = 𝜋/2 and approaches infinity for 𝜃 values of 0 and π, and is given by 𝑐𝑠
∗(𝜃) =  

𝑐𝑠

sin(θ)
. This 

change in effective 𝑐𝑠
∗(𝜃) as a function of 𝜃 is illustrated in S5, where a SAW wavefront has a higher 

velocity along the channel wall for more oblique angles. 

 

 

 

Noting that this effective 𝑐𝑠 is a function of 𝜃, the intersection angle as a function of the channel wall 

angle is given by   

 

Looking at the diagram in Figure S4, our challenge is to determine the value of 𝜆𝜃 from the 

geometries in this system. To do so we find the value for one of the lengths of the triangle bounded 

by the SAW wavefront, intersection line and the line marked 𝜆𝜃 above. This line is marked in Figure 

S6. The paragraph following details the geometric considerations involved. 

θI(θ) =  sin−1 (
𝑐𝑙

𝑐s
sin 𝜃). Eqn. S10 
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To find , we populate our diagram with angles defined in terms of the known quantities 𝜃 and θI. 

① First we note that the angle between the channel wall and the x-axis is equal to 𝜃 − 𝜋/2. ② 

Translating this known quantity to the right, we can use this angle and θI to ③ find the angle 

between the x-axis and the dotted line representing the fluid wavefront, given by 𝜃 − 𝜋/2 − θI. 

Noting that the combination of the lines denoting 𝜆𝑙 and the fluid wavefronts constitute a rotated 

rectangle within a rectangle comprised by the dashed lines and (red) SAW wavefronts, ④ the angle 

shown adjoining the line  is also given by 𝜃 − 𝜋/2 − θI. Since the fluid wavelength is a known 

quantity, the value of is simply given by 

⑤ We can then determine 𝜆𝜃 using

 

 

From here, the expression for 𝜆𝜃 in terms of know quantities can be determined, with  

 

 

 

Given cos(𝜃 − 𝜋/2) = sin (𝜃), this is equivalent to 

 

 

Finally, substituting Eq. S10 for θI we arrive at the expression for acoustic force periodicity in terms 

of 𝜃 and the fluid and substrate properties, with  

=
𝜆𝑙
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. Eqn. S11 

𝜆𝜃 =  cos(𝜃 − 𝜋/2). Eqn. S12 
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𝜆𝜃 = 𝜆𝑙sin(𝜃) csc(𝜃 − θI). Eqn. S14 
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Note S3: Theta Definition For Arbitrary channel wall orientations 

The periodicity for an arbitrary radius of curvature (between the 𝑅 → 0 and 𝑅 → ∞ cases 

represented by Equations 1 and 2) is discussed in the text. Figure 7 shows the transition between 

these two cases for finite R values as a function of the ratio of sound speeds in the fluid and 

substrate. For channel walls with such a curvature, the value of 𝜃 is still defined as the angle 

between the direction of acoustic propagation and a line extending orthogonally from the channel 

wall.  
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