Supporting Information

Interactions between Amphiphilic Janus Nanosheets and a Nonionic Polymer in Aqueous and Biphasic Systems

Dan Luo,^{a*‡} Fanghao Zhang,^{a,b‡} Fazhu Ding^{a,c} Bushi Ren,^{d,e} Zhifeng Ren^{a*}

^aDepartment of Physics and TcSUH, University of Houston, Houston, Texas 77204, United States;

^bDepartment of Chemistry, University of Houston, Houston, Texas 77204, United States;

^cKey Laboratory of Applied Superconductivity and Institute of Electrical Engineering, Chinese Academy

of Sciences, Beijing 100190, China

^dBeKool Technologies, Ltd., Houston, Texas 77023, United States;

eNingbo Fengcheng Advanced Energy Materials Research Institute, Ningbo, 315000, China

Corresponding Authors:

*<u>zren@uh.edu</u> *<u>danluo1101@gmail.com</u>

[‡]These authors contribute equally.

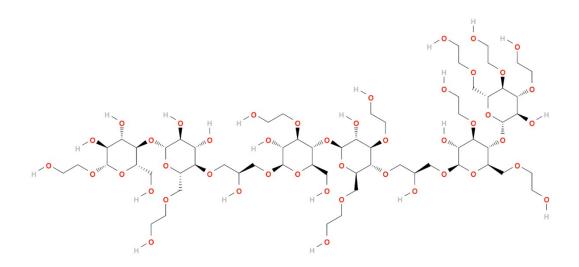


Figure S1. 2D structure of the HEC molecule used in the simulations.

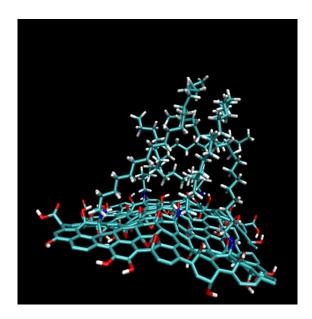
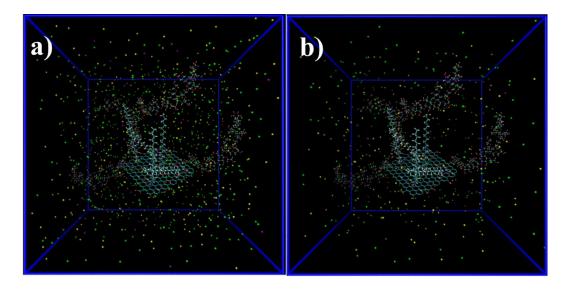
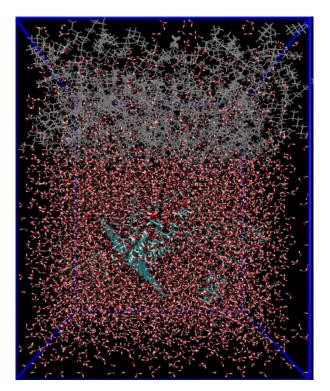




Figure S2. MD simulation of a graphene-based amphiphilic Janus nanosheet in water.

Figure S3. The initial states of MD simulations between one amphiphilic Janus nanosheet and four HEC molecules in **a**) high-salt condition (8 wt.% NaCl and 2 wt.% CaCl₂) and **b**) low-salt condition (4 wt.% NaCl and 1 wt.% CaCl₂).

Figure S4. The initial state of MD simulations between one amphiphilic Janus nanosheet and four HEC molecules in a biphasic system with a high ionic condition (8 wt.% NaCl and 2 wt.% CaCl₂).