Supporting Information

A novel bis-component AIE smart gel high selectively and sensitively detect CN^{-} , Fe³⁺ and H₂PO₄⁻

Guan-Fei Gong^a, Yan-Yan Chen^a, You-Ming Zhang^{a, b*}, Yan-Qing Fan^a, Qi Zhou^a, Hai-Long Yang^a, Qin-Peng Zhang^a, Hong Yao^a, Tai-Bao Wei^a, Qi Lin^{a*}

a Guan-Fei Gong, Yan-Yan Chen, You-Ming Zhang, Yan-Qing Fan, Qi Zhou, Hai-Long Yang, Qin-Peng Zhang, Hong Yao, Tai-Bao Wei and Qi Lin. Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China. E-mail: linqi2004@126.com.

b You-Ming Zhang. College of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, 730070, China. E-mail: zhangnwnu@126.com.

Table of Contents

Materials and methods4
General Procedure4
Preperation of the bis-component AIE-gel TG4
¹ H NMR experiments
Preperation of IG-Fe
Calculation formula of LOD
Calculate method of adsorption percentage5
Scheme S1 Synthesis of TNA and G5
Fig. S1 ¹ H NMR Spectrum of TNA in DMSO-d ₆ (600 MHz, 298K)6
Fig. S2 ¹³ C NMR Spectrum of TNA in DMSO-d ₆ (150 MHz, 298K)6
Fig. S3 Mass spectrum of TNA6
Fig. S4 FT-IR spectrum of TNA in KBr disk7
Fig. S5 ¹ H NMR spectrum of G in DMSO- <i>d</i> ₆ (400 MHz, 298K)7
Fig. S6 ¹³ C NMR spectrum of G in DMSO- <i>d</i> ₆ (150 MHz, 298K)8
Fig. S7 Mass spectrum of G8
Fig. S8 FT-IR spectrum of G in KBr disk8
Table S1 Gelation properties of TG in organic solvents9
Fig. S9 Mass spectrum of TG9
Fig. S10 FT-IR spectra of TNA, G and TG10
Fig. S11 XRD pattern of the TNA and TG10
Fig. S12 FE-SEM images of a) TNA and b) G10
Fig. S13 Fluorescent spectrum linear range for CN^2 by addition of various concentrations of CN^2 to
TG
Fig. S14 Fluorescent spectra changes (λ_{ex} = 380 nm) of TG with addition of different cations
aqueous solution
Fig. S15 Emission spectra of TG with increasing amounts of Fe ³⁺ 12
Fig. S16 Photograph of TG-based film fluorescently detect Fe ³⁺ in water solution12
Fig. S17 Fluorescent spectrum linear range for Fe ³⁺ by addition of various concentrations of Fe ³⁺ to
TG
Table S2 The ICP data of TG with Fe ³⁺
Fig. S18 Fluorescent spectra changes (λ_{ex} = 380 nm) of TG-Fe with addition of different anions
aqueous solution
Fig. S19 Fluorescent spectrum linear range for $H_2PO_4^-$ by addition of various concentrations of
H ₂ PO ₄ ⁻ to TG-Fe

Notes and references	14
Fig. S21 FT-IR spectra of TG , TG + Fe ³⁺ and TG-Fe + $H_2PO_4^-$	14
(b) 0.2 equiv.; (c) 0.4 equiv.; (d) 1.0 equiv.; (e) 2.0 equiv.	14
Fig. S20 Partial ¹ H NMR spectra of 5.0 mg TG in DMSO- d_6 with different equivalent CN ⁻ (a) 0 e	quiv.;

Materials and methods

All cations were used as the perchlorate salts, while all anions were used as the Tetrabutyl ammonium salts, which were purchased from Alfa Aesar and used as received. Fresh double distilled water was used throughout the experiment. Nuclear Magnetic Resonance (NMR) spectra were recorded on Varian Mercury 400 instruments. Mass spectra were recorded on a Bruker Esquire 6000 MS instrument. The infrared spectra were performed on a Digilab FTS-3000 Fourier transform-infrared spectrophotometer. The morphologies of the gel were characterized using field emission scanning electron microscopy (FE-SEM, UL TRA plus). The X-ray diffraction analysis (XRD) was performed in a transmission mode with a Rigaku RINT2000 diffractometer equipped with graphite monochromated CuKa radiation (λ = 1.54073 Å). Fluorescence spectra recorded а Shimadzu RF-5301PC were on spectrofluorophotometer.

General Procedure

Preperation of the bis-component AIE-gel TG

The mixture of **TNA** (12.86 mg, 1.6 \swarrow 10⁻⁵ M) and G (7.14 mg, 1.6 \bigstar 10⁻⁵ M) were added into a binary solution of DMSO and H₂O (V/V, 7.4 : 2.6, 0.275 mL), the mixture was heated dissolve, then cooled it to room temperature, obtaining stable biscomponents gel **TG**.

¹H NMR experiments

(1) ¹H NMR titration experiments of guest G to host TNA. The TNA (5 mg, 1.3×10^{-2} M) was dissolved in the DMSO- d_6 (0.5 mL), then, a series of different equivalent of guest G (0.1 M) were added into the solution of TNA and recorded their ¹H NMR respectively.

(2) The concentrations-dependent ¹H NMR of TG (TNA/G, 1 : 1, n/n): A series of DMSO- d_6 (0.5 mL) solutions of TG with different concentrations (7.57 mM; 12.6 mM; 17.7 mM; 27.8 mM) were prepared. Then record their ¹H NMR respectively.

(3) ¹H NMR titration experiments of TG to CN⁻. The TG (1.3×10^{-2} M) was dissolved in the DMSO- d_6 (0.5 mL), then a series of CN⁻ (0.1 M, DMSO- d_6) were added into the solution of TG and recorded their ¹H NMR respectively.

S4

Preperation of TG-Fe

The Fe³⁺ of 0.2 equiv. was added into the **TG** (0.275 mL), the mixture was heated dissolve, then cooled it to room temperature, obtaining stable **TG-Fe**.

Inductively coupled plasma (ICP) experiment

The xerogel of **TG** (2.0 mg) was suspended in a dilute aqueous solution of Fe^{3+} (1 × 10⁻⁵ M, 10.0 mL). After the mixture was stirred at room temperature for 1 h, we separated the precipitate by centrifugation (20 min) and obtained the supernatant and using the supernatant for ICP analysis.

Calculation formula of LOD

Formula 1: Linear Equation: y = Ax + B

$$\delta = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}} (n = 20)$$

Formula 2:

$$LOD = K \not {\mathfrak{S}} \frac{\delta}{s} (K = 3)$$

Formula 3:

Formula 4: S = A 🔗 10⁶

Calculate method of adsorption percentage

Adsorption percentage (%) =
$$\left(1 - \frac{C_1 \times V_1}{C_0 \times V_0}\right) \times 100\%$$

(State: C_1 is the residual concentration of Fe^{3+} , C_0 is the initial concentration of Fe^{3+} , $V_1 = V_0$).

Scheme S1 Synthesis of TNA and G.

TNA and G were synthesized according to our previous reported method, $^{\rm S1,\ S2}$ respectively.

Fig. S1 ¹H NMR Spectrum of TNA in DMSO- d_6 (600 MHz, 298K).

Fig. S2 ¹³C NMR Spectrum of TNA in DMSO- d_6 (150 MHz, 298K).

Fig. S3 Mass spectrum of TNA.

Fig. S4 FT-IR spectrum of TNA in KBr disk.

-11.78 --8.99 --8.67 8.26 8.26 8.26

Fig. S5 ¹H NMR spectrum of **G** in DMSO- d_6 (400 MHz, 298K).

Fig. S6 ¹³C NMR spectrum of G in DMSO- d_6 (150 MHz, 298K).

Fig. S8 FT-IR spectrum of G in KBr disk.

Entry	Solvents	State ^a	CGC ^b (%)	T _{gel} ^c (°C, wt/v %)
1	methanol	Р	١	\
2	ethanol	Р	١	\
4	n-butyl alcohol	Р	١	\
5	n-propanol	Р	١	\
6	n-hexanol	Р	١	\
7	formic acid	Р	١	\
8	acetic acid	Р	١	\
9	propanoic acid	Р	١	\
10	hexylic acid	Р	١	\
11	butyric acid	Р	١	\
12	CHCl ₃	Р	١	\
13	DMF	S	١	\
14	DMF/H₂O	Р	١	\
		S 9		

Table S1 Gelation properties of TG in organic solvents.

15	DMSO	S	\	١
16	DMSO/H ₂ O (7.4 : 2.6)	G	7	90-92 °C (7%)
17	acetonitrile	Р	\	١
18	cyclohexanol	р	\	١
19	cyclohexane	Р	\	\
20	n-hexane	Р	\	\

^aG, P, and S denote gelation, precipitation and solution, respectively.
^bThe critical gelation concentration (wt %, 10 mg/ml = 1.0 %).
^cThe gelation temperature (°C).

Fig. S9 Mass spectrum of TG.

Fig. S10 FT-IR spectra of TNA, G and TG.

Fig. S11 XRD pattern of the TNA and TG.

Fig. S12 FE-SEM images of a) TNA and b) G.

Fig. S13 Fluorescent spectrum linear range for CN⁻ by addition of various

concentrations of CN⁻ to TG.

Fig. S14 Fluorescent spectra changes (λ_{ex} = 380 nm) of **TG** with addition of different cations aqueous solution.

Fig. S15 Emission spectra of TG with increasing amounts of Fe³⁺.

Fig. S16 Fluorescent spectrum linear range for Fe³⁺ by addition of various

concentrations of Fe³⁺ to **TG**. Written in Fe³⁺ water solution

Fig. S17 Photograph of TG-based film fluorescently detect Fe³⁺ in water solution.

Table S2	The ICP	data of	TG with	1 Fe ³⁺ .
----------	---------	---------	---------	----------------------

lon	Initial concentration (M)	Residual concentration (M)	Absorbing rate (%)
Fe ³⁺	1 × 10 ⁻⁵	4.1 × 10 ⁻⁷	95.89 %

Fig. S18 Fluorescent spectra changes (λ_{ex} = 380 nm) of **TG-Fe** with addition of different anions aqueous solution.

Fig. S19 Fluorescent spectrum linear range for $H_2PO_4^-$ by addition of various concentrations of $H_2PO_4^-$ to TG-Fe.

Fig. S20 Partial ¹H NMR spectra of 5.0 mg **TG** in DMSO- d_6 with different equivalent CN⁻ (a) 0 equiv.; (b) 0.2 equiv.; (c) 0.4 equiv.; (d) 1.0 equiv.; (e) 2.0 equiv.

Fig. S22 FT-IR spectra of **TG**, **TG** + Fe^{3+} and **TG-Fe** + $H_2PO_4^{-}$.

Notes and references

- S1 Y. Q. Fan, J. Liu, Y. Y. Chen, X. W. Guan, J. Wang, H. Yao, Y. M. Zhang, T. B. Wei, Q. Lin, J. Mater. Chem. C., 2018, 6, 13331-13335.
- S2 Q. Lin, G. F. Gong, Y. Q. Fan, Y. Y. Chen, J. Wang, X. W. Guan, J. Liu, Y. M. Zhang, H.
 Yao, T. B. Wei, *Chem. Commun.*, 2019, 55, 3247-3250.