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I. THEORY

Here we outline the major steps in deriving the corre-
lation functions and the complex shear modulus on the
Smoluchowski time scale, i.e. the over-damped regime,
starting from Langevin equations

miv̇i = −γijvj −∇iU + ξi (1)

Ṙi = vi (2)

presented and explained in the main text. Due to the
experimental limitation on the data sampling frequency,
we can assume the momentum to be rapidly relaxing on
the time scale of the trap motion. Therefore, we can
adiabatically eliminate the momentum [1, 2] and get,

γij(R
0
i ,R

0
j )Ṙj + ∇iU = ξi (3)

〈ξi(t)〉 = 0

〈ξi(t)ξj(t′)〉 = 2kBTγij(R
0
i ,R

0
j )δ(t− t′)

Since the trap-center separation is far greater than the
standard deviation of the position fluctuations of indi-
vidual particles, γij can be considered time-independent
and a function of the trap-center separation. Equation
(3) can be inverted and presented in terms of approx-
imate mobility tensors µij(R0

i ,R
0
j ) = γ−1

ij (R0
i ,R

0
j ) in

the following manner:

Ṙi + µij∇jU = µijξj (4)

d

dt

[
R1

R2

]
= −

[
µk1δ µ12k2

µ21k1 µk2δ

] [
R1

R2

]
+

[
µδ µ12

µ21 µδ

] [
ξ1

ξ2

]
where µ11 = µδ = µ22 as the two particles are identical.
The steady-state solution of Eqn. (4) in frequency space
is derived easily by a Fourier transformation as

R(ω) = (−iωδ + A)−1Mξ(ω) (5)

where A =

[
µk1δ µ12k2

µ21k1 µk2δ

]
and M =

[
µδ µ12

µ21 µδ

]
. δ is

3× 3 unit matrix.
1. Correlation functions

The correlation matrix can be written as

〈R(ω)R†(ω)〉 =(−iωδ + A)−1M〈ξ(ω)ξ†(ω)〉M(iωδ + AT )−1

1

2kBT
C∆∆ = (−iωδ + A)−1M(iωδ + AT )−1 (6)

since, M〈ξ(ω)ξ†(ω)〉M = 2kBT ×M. We represent the
correlation function by C∆∆, i.e., 〈R(ω)R†(ω)〉 = C∆∆.
Now, for a given experimental set-up, the particles’ mo-
tion can be decomposed into components parallel and
perpendicular to the trap-separation. This C∆∆ can be
decomposed into C‖∆∆ and C⊥∆∆, which correspond to
motion along the trap separation and perpendicular to
it, respectively. Here, we are interested only in the paral-
lel component since, from the expressions of the parallel

and perpendicular components of µij (µxxij =
1

8πηai
=(

2− 4a2
i

3r2
0

)
and µyyij =

1

8πηai
=

(
1 +

2a2
i

3r2
0

)
, with ai

being the particle radius and r0 the inter-particle sep-
aration, it is clear that they differ only quantitatively -
and moreover, the perpendicular component is lower in
magnitude by a factor of two compared to the parallel
component at large inter-particle separations (r0 >> a).
Considering remote boundaries, the translational sym-
metry of the friction tensor can be used to express it in
the following manner:

γij = γ
‖
ij(r0)r̂0r̂0 + γ⊥ij (r0)(I − r̂0r̂0)

Here, r0 is the trap-center separation, γ‖ij(r0) is the
friction coefficient for the motion parallel to r0 and
γ⊥ij (r0) is the same but for the motion perpendicular to
the trap-center separation. Corresponding mobility ma-
trices are given by γ‖ikµ

‖
kj = δij . Now,
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C
‖
∆∆ = (−iωδ + A)−1

‖ M‖(iωδ + AT
‖ )−1 =

1

(DetA‖ − ω2)2 + ω2(TrA‖)2

×

[
µ‖k2 − iω −µ‖12k2

−µ‖21k1 µ‖k1 − iω

][
µ‖ µ

‖
12

µ
‖
21 µ‖

][
µ‖k2 + iω −µ‖12k2

−µ‖21k1 µ‖k1 + iω

]

=
1

(DetA‖ − ω2)2 + ω2(TrA‖)2
×

[
µ‖k2

2DetM‖ + µ‖ω2 −(DetA‖ − ω2)µ
‖
21

−(DetA‖ − ω2)µ
‖
12 µ‖k2

1DetM‖ + µ‖ω2

]

So, [
C
‖
11 C

‖
12

C
‖
21 C

‖
22

]
=

2KBT

(DetA‖ − ω2)2 + ω2(TrA‖)2

[
µ‖k2

2DetM‖ + µ‖ω2 −(DetA‖ − ω2)µ
‖
21

−(DetA‖ − ω2)µ
‖
12 µ‖k2

1DetM‖ + µ‖ω2

]

The auto-correlations of the Brownian position fluctu-
ations of the particles in the traps of stiffnesses k1 and
k2 in the frequency domain are given by

C
‖
11(ω) =

2KBT (µ‖k2
2DetM‖ + µ‖ω2)

(DetA‖ − ω2)2 + ω2(TrA‖)2
(7)

C
‖
22(ω) =

2KBT (µ‖k2
1DetM‖ + µ‖ω2)

(DetA‖ − ω2)2 + ω2(TrA‖)2
(8)

respectively and

C
‖
12(ω) = C

‖
21(ω) =

2KBTµ
‖
21(ω2 −DetA‖)

(DetA‖ − ω2)2 + ω2(TrA‖)2
(9)

is the representation of the cross-correlation function
in frequency domain.

DetA‖ = k1k2(µ
‖
11µ
‖
22 − µ

‖
12µ
‖
21)

TrA‖ = k1µ
‖
11 + k2µ

‖
22

(10)

Now, Eqns (7), (8) and (9) can be inverse Fourier trans-
formed to get auto and cross-correlations in the time do-
main. The auto-correlations are given by

C
‖
11(τ) =

2KBT

χ(k1 + k2)3
×

[(k2
2

(
1− µ

‖2
12

µ
‖2
11

)
− (k1+k2)2(1−χ)2

4

)
exp (−β−τ)

1− χ
+(

(k1+k2)2(1+χ)2

4 − k2
2

(
1− µ

‖2
12

µ
‖2
11

))
exp (−β+τ)

1 + χ

]
(11)

C
‖
22(τ) =

2KBT

χ(k1 + k2)3
×

[(k2
1

(
1− µ

‖2
12

µ
‖2
11

)
− (k1+k2)2(1−χ)2

4

)
exp (−β−τ)

1− χ
+(

(k1+k2)2(1+χ)2

4 − k2
1

(
1− µ

‖2
12

µ
‖2
11

))
exp (−β+τ)

1 + χ

]
(12)

and the cross-correlation is

C
‖
12(τ) = C

‖
21(τ) =

KBTµ
‖
12√

γ2 − 4ω2
0

[exp (−β+τ)− exp (−β−τ)]

(13)

where

χ =

√√√√√√√
1−

4k1k2

(
1− µ

‖2
12

µ
‖2
11

)
(k1 + k2)

2



β− =
µ
‖
11 (k1 + k2) (1− χ)

2

β+ =
µ
‖
11 (k1 + k2) (1 + χ)

2

and γ = TrA‖, ω2
0 = DetA‖. Here we assumed µ‖11 =

µ
‖
22 and µ‖12 = µ

‖
21, since the particles are identical. µ

‖
ii =

1
6πηai

and µ‖ij = 1
8πηai

(
2− 4a2i

3r20

)
.
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2. Complex shear modulus

Now, if we consider one of the two particles as probe
to investigate the viscous and elastic nature of the sys-
tem, then this will be manifested by the mean-square
displacement (MSD) of it’s Brownian fluctuation through
the equation given below [3].

G∗(ω) =
ki

6πai

 2
〈
R2
i

〉
iω
〈

∆R̂2
i (ω)

〉 − 1

 (14)

G∗(ω) is the frequency dependent dynamic complex
modulus, the real part (elastic modulus) of which rep-
resents the amount of energy stored and the imaginary
part (viscous modulus) represents dissipation of energy.
ki is the stiffness of the i-th trap in which the probe is
confined, ai is the radius of the probe.

〈
∆R̂2

i (ω)
〉

is
the Fourier transform of the time dependent MSD of the
thermal position fluctuation of the probe particle.

〈
R2
i

〉
is the time independent variance.
Single trapped particle in a viscous fluid: For a single

trapped particle in a viscous medium, the position auto-
correlation is given by

〈R(τ)R(0)〉 =
KBT

k
exp(−ωcτ) (15)

where, ωc = k
6πηa0

and k is the corresponding trap stiff-
ness. Therefore, the time-dependent mean-square dis-
placement (MSD) is〈

∆R2(τ)
〉

= 2
[〈
R2(0)

〉
− 〈R(τ)R(0)〉

]
(16)

=
2KBT

k
[1− exp (−ωcτ)] (17)

Now, from the Eqn. (14), in the following manner we
can calculate the complex shear modulus G∗(ω) of the
surrounding fluid accessed by the single trapped particle.

G∗(ω) = G(s)|s=iω

=
k

6πa0

 2
〈
R2
〉

s
〈

∆R̂2(s)
〉 − 1

 ∣∣∣∣∣
s=iω

= iηω

Here, a0 is the particle radius,
〈

∆R̂2(s)
〉
is the Laplace

transformation of the MSD and s is the Laplace fre-
quency. Clearly thus, the surrounding medium accessed
by the single trapped particle is purely dissipative in na-
ture.
Two particles trapped near to each other in a viscous

fluid: Now, for a system of two trapped particles close
to each other we can go through similar process assum-
ing one of the pair of trapped particles as probe. From

Eqns. (11) and (12), we can, in general write the auto-
correlation function (ACF) for the probe in the i-th po-
sition as

C
‖
ii(τ) =

2KBT

χ(ki + kj)3
×

[(k2
j

(
1− µ

‖2
ij

µ
‖2
ii

)
− (ki+kj)2(1−χ)2

4

)
exp (−β−τ)

1− χ
+(

(ki+kj)2(1+χ)2

4 − k2
j

(
1− µ

‖2
ij

µ
‖2
ii

))
exp (−β+τ)

1 + χ

]

where, i, j = 1, 2 and i 6= j. The stiffness of the i-th trap
is ki. Further, we can write the ACF as

C
‖
ii(τ) = A exp (−β−τ) +B exp (−β+τ)

where,

A =
2KBT

χ(ki + kj)3

k
2
j

(
1− µ

‖2
ij

µ
‖2
ii

)
− (ki+kj)2(1−χ)2

4

1− χ


and

B =
2KBT

χ(ki + kj)3


(ki+kj)2(1+χ)2

4 − k2
j

(
1− µ

‖2
ij

µ
‖2
ii

)
1 + χ


Therefore, the corresponding MSD is given by

〈
∆R2

i (τ)
〉

= 2 [(A+B)−A exp (−β−τ)−B exp (−β+τ)]

Now, if we consider the particle of radius ai in the i-th
trap as probe, then the complex shear modulus is given
by

G∗(ω) = G(s)|s=iω

=
ki

6πai

 2
〈
R2
i

〉
s
〈

∆R̂2
i (s)

〉 − 1

 ∣∣∣∣∣
s=iω

where,
〈

∆R̂2
i (s)

〉
is the Laplace transformation of the

MSD of the probe and
〈
R2
i

〉
is the variance of the corre-

sponding thermal fluctuations. This results into,
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G∗(ω) =
ki

6πai

[
ω2

{
(Aβ− +Bβ+)(Aβ+ +Bβ−)

ω2(Aβ− +Bβ+)2 + β2
+β

2
−(A+B)2

− β+β−(A+B)2

ω2(Aβ− +Bβ+)2 + β2
+β

2
−(A+B)2

}

+ iω

{
(A+B)(Aβ+ +Bβ−)β+β−

ω2(Aβ− +Bβ+)2 + β2
+β

2
−(A+B)2

+
ω2(A+B)(Aβ− +Bβ+)

ω2(Aβ− +Bβ+)2 + β2
+β

2
−(A+B)2

}]
(18)

However, this expression can be simplified substantially.
The real part of the G∗(ω) can be simplified to

G′(ω) =
ki

6πa0
× ω2

[
AB(β+ − β−)2

ω2(Aβ− +Bβ+)2 + β2
+β

2
−(A+B)2

]
(19)

Further, it can be shown that

A+B =

(
KBT

ki

)
AB =

(KBT )2

γ2 − 4ω2
0

×
kjµ

2
ij

ki

β+ + β− = γ

β+ − β− =
√
γ2 − 4ω2

0

β+β− = ω2
0

Aβ− +Bβ+ = µiiKBT

Aβ+ +Bβ− = µiiKBT
kj
ki



(20)

From this expressions above (20), one can get simplified
forms of A, B, β+ and β−.

A =
KBT

2ki

1 + (kj − ki)
√√√√ 1

(kj − ki)2 +
4kikjµ

‖2
ij

µ
‖2
ii



B =
KBT

2ki

1− (kj − ki)
√√√√ 1

(kj − ki)2 +
4kikjµ

‖2
ij

µ
‖2
ii




(21)

β− =

µ
‖
ii

[
(ki + kj)−

√
(kj − ki)2 +

4kikjµ
‖2
ij

µ
‖2
ii

]
2

β+ =

µ
‖
ii

[
(ki + kj) +

√
(kj − ki)2 +

4kikjµ
‖2
ij

µ
‖2
ii

]
2


(22)

Substituting the above expressions (20) in the Eqn. (19),
we finally get,

G′(ω) =
ki

6πai
× ω2

[
kikjµ

2
ij

ω4
0 + (µiiki)2ω2

]
(23)

Figure 1: Schematic of the experimental setup. λ/2: half-
wave plate, AOD: Acousto-optic deflector, M: plane mirror,
DC: dichroic, TL: trapping laser, DL: detection laser, PBS:
polarizing beam splitter, BD: balance detector, EM: edge mir-
ror, PD: photo-diode (Thorlabs PDA100A-EC).

Similarly, we get the imaginary part of G∗(ω) as

G′′(ω) =
ki

6πai
× ω

[
kjµiiω

2
0 + kiµiiω

2

ω4
0 + (µiiki)2ω2

]
(24)

II. EXPERIMENT

To check the validity of the above-described theory we
set up (Fig. 1) a dual-beam optical tweezers by focusing
two independently generated orthogonally polarized laser
beams from two diode lasers (TL1 and TL2) of wave-
length λ = 1064 nm, using a high NA immersion-oil mi-
croscope objective (Zeiss PlanApo,100 × 1.4). Two λ/2
plates, in front of the lasers control the polarization an-
gle of these two laser beams. After passing through λ/2
plates one of these two beams encounter an acousto-optic
deflector (AOD) to modulate the direction of the beam
and then mirror pairs M1, M2 and M3, M4, respectively,
as two beam steerers. Then they get coupled into a po-
larizing beam splitter (PBS1). For detection, we use two
lasers of wavelength λ = 671 nm (DL1) and λ = 780 nm
(DL2) which we couple to the trapping lasers using two
dichroic mirrors (DC1 and DC2) before the beam steering
mirrors. We image two trapped beads and measure their
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displacements by back-focal-plane-interferometry, while
we use white light for imaging. After collecting the to-
tal back-scattered light from the microscope, we sepa-
rate the components from the two particles using another
dichroic (DC4) and then direct these towards two bal-
anced detection systems BD1 and BD2, developed using
photodiode pairs. The cartoon representation of one such
balanced detector is shown in the inset of Fig. 1. The
voltage-amplitude calibration of our detection system re-
veals that we can resolve motion of around 5 nm with an
SNR of 2. We prepared a very low volume fraction sample
(φ ≈ 0.01) with 3 µm diameter polystyrene latex beads
in 1 M NaCl-water solution for avoiding surface charges.
We loaded the sample in a chamber of area 20× 10 mm
and height 0.2 mm and two spherical polystyrene beads
(Sigma LB-30) of mean size 3 µm each were trapped in
two calibrated optical traps which we kept separated ini-
tially by a distance of 5 ± 0.1 micron from each other,
and at a distance of 30 µm from the nearest wall. Then
the separation and laser powers were varied to perform
our experiment. According to a reported experimental
work [4], this distance is large enough to avoid optical
cross-talk and the effects from surface charges. In order
to ensure that the trapping beams do not influence each
other, we measured the Brownian motion of one when
the other is switched on (in the absence of a particle),
and checked that there were no changes in the properties
of the Brownian fluctuations. We normalized each time
series representing the position fluctuation of each parti-
cle by the sum intensity measured by the corresponding
photodiode pair to account for the laser power fluctu-
ations. Then we collected it, typically over 10 second
and at sampling frequency 10kHz using a data acquisi-
tion card (NI USB-6356), which was coupled to a com-
puter. we recorded two time series corresponding to two
trapped particles simultaneously. We check that there
is less than one percent cross-talk of signals in the two
detectors due to leakage through the dichroic DC4. Fur-
ther, to avoid low frequency noise for the measurement of
G∗, we perform active microrheology by modulating one
of the trapped particles by the AOD in the presence of
the other, and measure the response of the correspond-
ing confined particle over 5 minutes for each frequency of
modulation.

III. CALIBRATION AND ANALYSIS

Calibration: Before performing the experiments, it is
essential to calibrate the traps properly. First and fore-
most, we need to ensure that both the traps are inde-
pendent of each other, i.e., there is no optical cross-talk
present between the traps. Understandably, any cross-
talk between the traps will distort the harmonic nature
of the potentials as a consequence of which the position
probability distribution function will deviate from being
Gaussian. To ensure the absence of any optical cross-talk,
we confine a particle in an individual trap keeping the ad-
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Figure 2: Position probability density functions of the trapped
particles for trap separations (a-b) 5 µm and (c-d) 9 µm. (a), (c)
are for the weak traps of stiffness k2 = 30 µN/m and (b), (d) are
for the strong traps of stiffness k1 = 43 µN/m.

jacent trap empty (however, the corresponding trapping
laser is still on) and record its thermal position fluctua-
tions in order to measure the corresponding probability
distribution function. We perform this check for all the
separations, and in Fig. 2, we show the results for the
closest and for the farthest distances that we use in our
experiment. It is clear from this figure that the optical
cross-talk between the traps is absent for the whole range
of the trap separations used in our experiment, as none
of the position probability distribution functions deviate
from their expected Gaussian nature. Note that, accord-
ing to the work reported in the Ref. [4], 5 µm separation
between two particles of radius 1.5 µm is large enough
to prevent any cross-talk. Careful sensitivity measure-
ment of the detection system is required for our experi-
ments, which we perform by sifting the trapping beam by
a known amount and detecting the corresponding change
in the signal from the balanced detection system.

Now, to measure the stiffnesses of the traps we use
the power spectral density (PSD) method which in addi-
tion can calculate the diffusion coefficient and thus can
cross-check the measured sensitivity values. However, we
cross-check the measured stiffnesses from the PSD with
the measurement using the equipartition theorem and get
very close match (maximum within 0.5 %; the small dis-
crepancy, we perceive, is due to the fitting error in the
PSD method or due to a small additive noise in the data
that does not get reflected in fc but affects the variance,
which governs the equipartition theorem). The equiparti-
tion theorem (

〈
(x2)

〉
= KBT

k ; the mean has been assumed
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Figure 3: Data representing the stiffness measurement process
along with the fitted parameter values. (Left) The measured
PSD (red circles) and the corresponding fit (black solid line)
w.r.t. frequency, representing the highest stiffness of a mean value
43± 0.7 µN/m (over several data sets); in the inset raw data of 10
seconds has been shown in nm units. (Right) The similar measure-
ment representing stiffness of a mean value 30 ± 0.6 µN/m (over
several data sets).

to be zero) is independent of the rheological properties of
the surrounding environment which thus remains less af-
fected even by the presence of any other particles around
it. The power spectral density function of a particle con-
fined in an optical trap (harmonic potential) is given by

Sxx(f) =
D/2π2

f2 + f2
c

(25)

where, fc = k
12π2ηa0

, k is the trap stiffness, η is the vis-
cosity of the surrounding fluid and a0 is the radius of
the particle. To measure the stiffness from the PSD, we
follow the procedure suggested in Ref. [5–7], and block
data with a bin size of 100 points and fit with the desired
theoretical expression as given in the Eqn. (25). Also, we
set the frequency range for fitting over a range in order
to avoid the systematic low and high frequency errors
caused due to very low frequency noises and the aliasing
effect respectively. We show two set of data represent-
ing our whole stiffness measurement process in Fig. 3,
where it also can be seen that the estimated value of
the diffusion coefficient from the PSD matches the corre-
sponding value for water at temperature 300 K. For each
configuration, we perform the stiffness measurement over
several sets of data and observe a standard deviation of
maximum 4%. In increasing the trap separation, the stiff-
ness changes, which we however bring back to the desired
value by tuning the laser power.
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Figure 4: MSD of the position fluctuation of the probe confined
in trap of stiffness k1 = 43 µN/m when the other trap with an
identical particle in it has stiffness (a) k2 = 36.5 µN/m, (b) k2 =
10 µN/m.
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Figure 5: (a) Amplitude and (b) phase of the probe confined in
trap of stiffness k1 = 43 µN/m when the other trap with an iden-
tical particle in it has stiffness k2 = 10 µN/m.

Analysis: In order to study the induced memory in
the system, we calculate the auto-correlation function
(ACF) and the corss-correlation function (CCF) of the
thermal position fluctuations of the trapped particles in
the two traps of various stiffnesses and at different sepa-
rations. Further, we use one of the trapped particles as
probe and use Eqn. (14) to measure the complex shear
modulus G∗(ω) of the surrounding environment. Note
that in Eqn. (14), we subtract the contribution of the trap
to G∗, which is ki

6πai
. We perform passive microrheology

for the higher side of the frequency spectrum to avoid var-
ious low frequency noises, and for the lower part of the
spectrum we use active microrheology to calculate G∗,
as active microrheology has better signal-to-noise ratio
w.r.t. the passive microrheology. For passive microrhe-
ology we use Eqn. (14) which uses the MSD of the probe
particle. Now for doing the measurement from the MSD,
we need to take the Fourier transform of the measured
MSD of the probe. However, we do not directly calculate
the Fourier transform to avoid the potential errors that
can be caused by the process principally at the extreme
frequency ends. These arise while working with a lim-
ited number of points for a finite time. In contrast to
the direct Fourier transform of the MSD, we follow the
power law expansion method described by T. G. Mason
in Ref. [8]. In Fig. 4, we have shown MSDs of the probe



7

for two stiffness values of the nearby trap which confines
an identical particle in it. In addition, to demonstrate
that the extraction of G∗ from the MSD is independent
of the trap stiffness, we have plotted G∗ for a single trap
for different stiffnesses in the same graph (Fig. 6). How-
ever, since, the real and the imaginary parts of G∗ do not
depend on the stiffness of the trap, they almost overlap
on each other.
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Figure 6: Real and imaginary parts of G∗ w.r.t frequency for
single trap of various trap stiffnesses.

For the active microrheology, we can solve the gen-
eralized Langevin equation describing the motion of a
particle in a viscoelastic fluid with an additional forcing
term included and neglecting the noise and the inertial
term from it. Note that we are only interested about the
response of the particle under external perturbation, and
we work in a frequency regime where the inertial effect is
negligible. The corresponding equation in the frequency

domain is given by,

0 = iωγ(ω)− kx(ω) + kx0(ω) (26)

where x(ω) is the position of the particle, γ(ω) is the fre-
quency dependent damping term, k is the stiffness of the
trap and x0(ω) is the external perturbation. Therefore,
the particle response function is given by

χres(ω) =
1

k − iωγ(ω)
(27)

where the response function is defined as,

x(ω) = χres(ω)kx0(ω) (28)

Now, the complex shear modulus G∗(ω) is related to γ(ω)
as G∗(ω) = −iωγ(ω)/6πai; ai is the radius of the probe
particle [9]. So,

G∗(ω) =
1

6πaiχres(ω)
− k

6πai
(29)

and G∗(ω) = G′(ω) − iG′′(ω). Note that here also we
subtract the contribution of the trap to G∗(ω). In the
experiment, we modulate the trap of stiffness 43µN/m
with an amplitude of 100 nm using the AOD and mea-
sure the response of the particle for each frequency over
5 min. Further, we use Eqn. (28) to calculate the cor-
responding response function from the data, and use
Eqn. (29) to calculate the G∗(ω) value. In Fig. 5, we have
shown one of our measurements of the amplitude and
phase of the response function for the probe trap stiff-
ness at 43µN/m and the other trap stiffness at 10µN/m.
Note that we have performed similar experiments ear-
lier and this method has been validated by us rigorously
[10, 11].
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