
SUPPLEMENTARY INFORMATION

Total Balance of Forces

Instead of using Young’s relation to derive Equation (1), we can use total equilibrium of

forces to obtain the same result. The total force per unit of line applied at the interface

between two cylinders is p × 2` where ` = [(d + r) − r cosα] (see Fig. S1) is the projected

cross section of the liquid vapor interface. The applied pressure must be balanced by the

forces at the contact point A and A’ that have a total vertical component 2γlv sin β, where

β = θc − (π/2− α) is the angle between the interface and the horizontal direction. It gives

p× 2[(d+ r)− r cosα] = 2γlv sin β −→ p =
γlv
r

cos(θc + α)

cosα−D∗

A A’

dr
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Fig. S 1. Left: Schematic of the vapor liquid interface between two cylinders of radius r and their

axes a distance 2(d + r) apart. Right: This exact configuration is observed for a mesh textured

surface (upper right ) or a surface textured by pores of double curvature (bottom right).

Similar calculation can be made for a pore textured surface with geometry defined by

Fig. S1. The total pressure applied to the interface is pS where S = π`2 is the projected
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area of the liquid vapor interface. The pressure must be balanced by the vertical forces at

the line of contact γlv sin β2π`. It gives

p× π[(d+ r)− r cosα]2 = 2πγlv sin β[(d+ r)− r cosα] −→ p = 2
γlv
r

cos(θc + α)

cosα−D∗

Thus, except for a factor 2 the pressure for a pore structured topography is equivalent to

the pressure in a mesh topography.

Measurement of the contact angle and data fit

Cassie and Baxter[S1] addressed the problem of enhanced hydrophobicity studying the

contact angle of large water drops on a porous surface made of wax parallel filaments. Using

a two dimensional geometry, they showed that the apparent angle θ∗ is connected with the

dimensionless spacing ratio D∗ and the contact angle θc of the water drop measured on a

flat surface coated with the same wax. The apparent angle is predicted by the Cassie Baxter

relation

cos θ∗ = f1 cos θc − f2 (S 1)

where f1 and f2 are

f1 =
(π − θc)
D∗

(S 2)

f2 = 1− sin θc
D∗

(S 3)

An important assumption of this relation is that the pressure inside the water drop is almost

zero so that the water-vapor interface is flat. This happens for α = π/2− θc in Fig. S1.

Equation (S 1) is used to predict the apparent contact angle in terms of θc and D∗;

however, here we use it in the inverse way: the apparent contact angle of a large water drop

is measured for a mesh of known value of D∗, and then the contact angle is obtained by

solving Eq. (S 1). This procedure give us a method to estimate the contact angle of the solid

part of the mesh without having to prepare a smooth surface to study the contact angle

of the solid. Figure S2 (and the inset of Fig. 6) gives the measured value of θ∗ for the set

of meshes used in our experiments. Although we observe a large variation in the measure

apparent angle from 90 to 120 degrees, the contact angle extracted from this measurements

has a narrow variation from 59 to 63 degrees. The average value is θc = 62o.
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Fig. S 2. The measured apparent contact angle θ∗ as a function of the dimensionless spacing ratio

(open circles). The black circles give the predicted contact angle θc for each experiment by using

Eq. (S 1)

There have been some criticism to Eq. (S 1) in recent studies because it is derived in terms

of pure two dimensional arguments. Jiang et al.[S3] claim that Eq. (S 1) predict incorrect

apparent angles for woven meshes with a large pore size (larger than a 100µm × 100µm).

Similarly, Venkateshan and Tafreshi [S2] have reported numerical simulations that disagree

with the prediction of Eq. (S 1) for large porous size and small water drops. We measured the

apparent angle in large water drops to avoid these problems. In our case, a good validation

of Eq. (S 1) is that all our measurements can be explained by a common constant parameter

θc as it is observed in Fig. S2.

Equivalent analysis to obtain the angle of contact θc is made by studying the breakthrough

pressure. For one layer of filaments this corresponds to leaking, and the critical pressure is
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predicted by the relation

pB =

pm = γlv
r

1
(D2

∗−sin2 θc)1/2+cos θc
D∗ < Dπ/2 = tan θc

pπ/2 = γlv
r

sin θc
D∗

D∗ > Dπ/2

It is noteworthy that the maximum pressure and saturation pressure conditions are continu-

ously connected at D∗ = Dπ/2, hence, the regular behavior of pm for d→ 0 is reflected in the

regular behavior of pπ/2. The contact angle θc is the only free parameter in this relation and

we use it to fit the data shown in Fig. 6. It gives θc ≈ 57o and a coefficient of determination

R-squared 0.99.

The same fit can be applied to the prediction of Eq. 1 in the main text

pB =
γlv
d

2r(1− cos θc)

(d+ 2r sin θc)

It gives θc ≈ 72o with an R-squared of 0.87. Thus, the breakthrough pressure predicted

in terms of the saturation and maximum pressure mechanisms is a better predictor of our

observations.

Videos

We observe two types of behaviors when studying the breakthrough pressure in our

experiments: 1) localized leaking driven by defects in the mesh where the breakthrough

happens in particular places of the mesh where defects impose a local larger value of the

spacing ratio, and 2) global leaking that happens in all parts of the mesh at the same time.

They are shown in the following movies

• Video S1a: side view of the setup showing localized leaking

• Video S1b: bottom view of the setup showing localized leaking

• Video S2a: side view of the setup showing global leaking

• Video S2b: bottom view of the setup showing global leaking
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