Molecular dynamics simulation of the electrical conductive network

formation of polymer nanocomposites by utilizing diblock

copolymer-mediated nanoparticles

Yangyang Gao^{1,2,3}, Xiaohui Duan^{1,2,3}, Peng Jiang^{1,2,3}, Huan Zhang⁴, Jun Liu^{1,2,3}, Shipeng Wen^{1,2,3*},

Xiuying Zhao^{1,2,3*}, Liqun Zhang^{1, 2,3*}

¹Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, 10029, People's Republic of China

 ²Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
³State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029, People's Republic of China
⁴Aerospace Research Institute of Materials and Processing Technology, Beijing, 100076, People's Republic of China

^{*} Corresponding author: <u>wensp@mail.buct.edu.cn</u> or <u>zhaoxy@mail.buct.edu.cn</u> or <u>zhanglq@mail.buct.edu.cn</u>

Fig. S1 Schematics of a typical system which contains nanoparticles, diblock chains and polymer chains.

Fig. S2 The snapshots of the nanoparticles (NPs) with respect to the ratio α of the number of beads of BCPs to that of all the chains where the polymer chains are neglected for clarity at $\varphi = 15.2\%$. The red spheres denote the NPs. ($T^* = 1.0$)

Fig. S3(a) The coordination number and (b) the snapshots of the nanoparticles (NPs) with respect to the A-Block-NP interaction \mathcal{E}_{AN} where the polymer chains are neglected for clarity at $\varphi = 12.4\%$. The red spheres denote the NPs. ($T^* = 1.0$)

Fig. S4(a) RDF and (b) the probability distribution (P_N) of the nearest neighbor nanoparticles (NPs) surrounding one NP at a separation closer than 5.0σ (N_{num}) with respect to the fraction of A block (f_A) where the polymer chains are neglected for clarity at φ =15.2%. (T^* =1.0)

Fig. S5 Change of (a) the main cluster size C_n and (b) the total number of clusters N_c as a function of the fraction of A block (f_A) for three NP volume fractions (φ). (c) Some snapshots of the NPs with different f_A where the polymer chains are neglected for clarity at φ =15.2%. The red spheres denote the NPs within the main cluster. The blue spheres are the other NPs. (T^* =1.0)

Fig. S6 RDF of nanoparticles as a function of the ratio (α) of the number of beads of BCPs to that of all the chains at φ =15.2%. (T^* =1.0, $\dot{\gamma}$ =0.1)

Fig. S7 Local density profiles of the nanoparticles along the Y-axis or Z-axis direction with different ratio (α) of the number of beads of BCPs to that of all the chains at φ =15.2%. (T^* =1.0, $\dot{\gamma}$ =0.1)

Fig. S8 Snapshots of the sandwich-like structures for different temperature T^* .

Fig. S9 RDF of nanoparticles as a function of the shear rate ($\dot{\gamma}$) at φ =15.2%. (T^* =1.0, α =0.67)

Fig. S10 Some snapshots of the nanoparticles (NPs) for (a) the ratio $\alpha = 0.67$ and (b) $\dot{\alpha} = 0.00$ with different shear rate $(\dot{\gamma})$ where the polymer chains are neglected for clarity at $\varphi = 15.2\%$. The red spheres denote the NPs. ($T^* = 1.0$)

Fig. S11 Comparison of the shear stress τ_{xy} of the initial states and steady states for different α and shear rate $\dot{(\gamma)}$ at φ =15.2%. (T^* =1.0)

Table SI. Beads parameters

Atom Type	Representation	Bead diameter (σ)	Bead mass (m)
1	Nanoparticle	4	64
2	A-block of BCP	1	1
3	B-block of BCP	1	1
4	Matrix chains	1	1

BCP is the diblock copolymers.

Table SII. Parameters of each simulated system

System	<i>ϕ</i> (%)	N _{BCP} /N _m	α	${\cal E}_{AN}$	f_A
1	12.4	0/800	0.00	3.0	0.5
2	12.4	480/640	0.20	3.0	0.5
3	12.4	792/536	0.33	3.0	0.5

4	12.4	960/480	0.40	3.0	0.5
5	12.4	1200/400	0.50	3.0	0.5
6	12.4	1440/320	0.60	3.0	0.5
7	12.4	1608/264	0.67	3.0	0.5
8	12.4	1920/160	0.80	3.0	0.5
9	12.4	2400/0	1.00	3.0	0.5
10	13.9	0/800	0.00	3.0	0.5
11	13.9	480/640	0.20	3.0	0.5
12	13.9	792/536	0.33	3.0	0.5
13	13.9	960/480	0.40	3.0	0.5
14	13.9	1200/400	0.50	3.0	0.5
15	13.9	1440/320	0.60	3.0	0.5
16	13.9	1608/264	0.67	3.0	0.5
17	13.9	1920/160	0.80	3.0	0.5
18	13.9	2400/0	1.00	3.0	0.5
19	15.2	0/800	0.00	3.0	0.5
20	15.2	480/640	0.20	3.0	0.5
21	15.2	792/536	0.33	3.0	0.5
22	15.2	960/480	0.40	3.0	0.5
23	15.2	1200/400	0.50	3.0	0.5
24	15.2	1440/320	0.60	3.0	0.5
25	15.2	1608/264	0.67	3.0	0.5
26	15.2	1920/160	0.80	3.0	0.5
27	15.2	2400/0	1.00	3.0	0.5
28	12.4	1608/264	0.67	1.0	0.5
29	12.4	1608/264	0.67	1.5	0.5
30	12.4	1608/264	0.67	2.0	0.5

31	12.4	1608/264	0.67	2.5	0.5
32	12.4	1608/264	0.67	3.0	0.5
33	12.4	1608/264	0.67	4.0	0.5
34	12.4	1608/264	0.67	5.0	0.5
35	12.4	1608/264	0.67	8.0	0.5
36	13.9	1608/264	0.67	1.0	0.5
37	13.9	1608/264	0.67	1.5	0.5
38	13.9	1608/264	0.67	2.0	0.5
39	13.9	1608/264	0.67	2.5	0.5
40	13.9	1608/264	0.67	3.0	0.5
41	13.9	1608/264	0.67	4.0	0.5
42	13.9	1608/264	0.67	5.0	0.5
43	13.9	1608/264	0.67	8.0	0.5
44	15.2	1608/264	0.67	1.0	0.5
45	15.2	1608/264	0.67	1.5	0.5
46	15.2	1608/264	0.67	2.0	0.5
47	15.2	1608/264	0.67	2.5	0.5
48	15.2	1608/264	0.67	3.0	0.5
49	15.2	1608/264	0.67	4.0	0.5
50	15.2	1608/264	0.67	5.0	0.5
51	15.2	1608/264	0.67	8.0	0.5
52	12.4	1608/264	0.67	3.0	0.0
53	12.4	1608/264	0.67	3.0	0.1
54	12.4	1608/264	0.67	3.0	0.3
55	12.4	1608/264	0.67	3.0	0.5
56	12.4	1608/264	0.67	3.0	0.7
57	12.4	1608/264	0.67	3.0	0.9

58	12.4	1608/264	0.67	3.0	1.0
59	13.9	1608/264	0.67	3.0	0.0
60	13.9	1608/264	0.67	3.0	0.1
61	13.9	1608/264	0.67	3.0	0.3
62	13.9	1608/264	0.67	3.0	0.5
63	13.9	1608/264	0.67	3.0	0.7
64	13.9	1608/264	0.67	3.0	0.9
65	13.9	1608/264	0.67	3.0	1.0
66	15.2	1608/264	0.67	3.0	0.0
67	15.2	1608/264	0.67	3.0	0.1
68	15.2	1608/264	0.67	3.0	0.3
69	15.2	1608/264	0.67	3.0	0.5
70	15.2	1608/264	0.67	3.0	0.7
71	15.2	1608/264	0.67	3.0	0.9
72	15.2	1608/264	0.67	3.0	1.0

The volume fraction of nanoparticles (NPs) φ , the number of the diblock copolymers (BCP) $N_{\rm BCP}$, the number of matrix chains $N_{\rm m}$, the ratio of the number of beads of BCPs to that of all the chains α , the A-Block-NP interaction ε_{AN} , the fraction of A block f_A .

Interaction types	$\mathcal{E}_{ij}^{a}(\mathcal{E})$	$\Delta^b(\sigma)$	$r_{cutoff}^{b}(\sigma)$
NP-NP	1.0	3.0	2.5
NP-A-block	1.0-8.0	1.5	2.5
NP-B-block	1.0	1.5	1.12
NP-matrix	1.0	1.5	2.5
A-block-A-block	1.0	0.0	2.5
A-block-B-block	1.0	0.0	1.12
B-block-B-block	1.0	0.0	2.5
A-block-matrix	1.0	0.0	1.12
B-block-matrix	1.0	0.0	2.5

Table SIII Nonbonded interaction parameters used in this work.

matrix-matrix	1.0	0.0	2.5

NP is the nanoparticles.