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S1. Box size effects

It is a known fact that long-range correlations may arise in microgel systems, given the

single particle intrinsically inhomogeneous structure in which monomer charges remain fixed,

while counterions can freely move throughout the available particle volume. These long-

range correlations in the counterion cloud surrounding the particles can strongly affect the

microgel swelling properties. In particular, it has been shown that changes in counterions

density profile modifies the osmotic pressure balance, causing the deswelling of microgels

when the suspension concentration is raised. If this effect happens for neutral microgels in

overlapping conditions,1 for ionic microgel it plays a role already at packing fractions lower

than the overlapping ones, though relatively high.2 In addition, at low packing fractions

and highly de-ionised conditions, the hydrodynamic radius has been proven to be strongly

concentration-dependent, due to a change in the extension of the external chains, which

significantly depends on the amount of the screening from the counterions, in turn determined

by their concentration.2

Therefore, within our explicit counterions simulations, specific care must be taken to deal

with long-range electrostatic interactions. Since we focused our investigation on the study of

single particle properties at high dilution, we performed a preliminary analysis on the effects

of the choice of the side L of the (cubic) simulation box. Most importantly, we needed to

identify a suitable value of L, which was large enough to avoid situations where periodic

replicas would be able to feel each other, generating spurious effects.To this aim, we initially

performed simulations of a smaller microgel with N ∼ 5000 monomers with f = 0.20 and

c = 3.2%, assembled in a spherical cavity of radius R0 = 15σ, in different box sizes with

40σ ≤ L ≤ 300σ.

Looking at the variation of the total potential energy per bead E/N , shown in fig. S1,

the long-range effects of electrostatic forces are evident, resulting in as a monotonic increase

with L, mainly due to the decrease of average couterion concentration. The figure also shows

the average bond energy, which remains unaffected by the change in L. Both those effects
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are trivial and do not help choosing the correct box side.
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Figure S1: Total potential energy per monomer (scale on the left-axis) and bond potential energy
per monomer (scale on the right axis) as a function of the side of the simulation box L. In the
latter, only the contribution coming from VFENE is considered.

Relevant insights can be gained by looking at the evolution of the overall dimension

and charge of the microgel particle when changing the box size. In Fig. S2 we report the

dependence of the gyration radius on the box size. Since this observable mainly takes into

account the contribution of the core of the particle, in order to also consider the extent

of the corona, we also report the corresponding variation with L of the upper limit of the

hydrodynamic radius R∗ defined as the radius at which the spatial integral of the monomers

density profile is equal to N .3 Both Rg and R∗ do not appreciably vary beyond L ∼ 80σ,

suggesting that the size of both the core and the corona of the microgel are stable for large

boxes. Similarly, the charge contained inside a sphere of radius Rg, Q(Rg), remains quite

constant beyond L ∼ 80σ, while the charge contained in a sphere of radius R∗, Q(R∗), which

also accounts for the counterions condensed on the corona of the particle, is found to increase

quickly for small values of L and more slowly at high values of L. On the basis of this last

result, we select L = 80σ as an optimal box size and we thus use the corresponding value
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Figure S2: (a) Radius of gyration Rg (triangles) and hydrodynamic radius R∗ (squares), defined
as in the text, as a function of L; (b) charge contained in a sphere of radius Rg (triangles) and of
radius R∗ (squares), given in units of e∗, as a function of L.

L = 300σ for the larger microgels (N ≈ 42000) studied in the manuscript.

S2. Choice of the counterion size

We also performed a preliminary analysis on the choice of the counterion size to assess its

effects on the microgel properties across the volume phase transition. Clearly, a precise

assessment of the coarse-graining size σc of counterions, comprehensive of their hydration

shell, is not a simple task. In reality, the value of σc depends upon the ion species, the

temperature, and the local environment wherein the ion is located (if the ion is confined

within a dense polymer mesh the structure of its hydration shell could be different than in

solution). However from ab initio molecular dynamics simulations it is found to be of the

order of a few Å,4 i.e. sensitively smaller than the Kuhn length of the polymers we are

studying. Previous studies3,5–7 had assigned to counterions the same excluded volume of
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monomers. However, we found that such a choice, although having little effect on microgels

in the swollen state, dramatically alters their internal structure and swelling properties at

high α values. This is due to the fact that, when the solvophobic attraction increases and

the microgel shrinks, excluded volume effects become important, so that the counterions

become partially trapped in the interior of the microgels, giving rise to an oscillatory charge

density profile.

When α increases the polymer beads tend to come in contact with each other in order

to minimise the energy. This acts at the same time as the electrostatic attraction between

charged monomers and counterions. At sufficiently high α, the solvophobic attraction should

win, but if the size of the counterions is too large, the additional steric repulsion will hinder

the formation of bead-bead contacts and cause the presence of oscillations in the density

profile of both monomers and counterions, as shown Fig. S3. We see that these effects are
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Figure S3: Density profiles of charged monomers (solid lines) and counterions (symbols) for the
fully collapsed state (α = 1.50) and different sizes of the counterions, i.e. σc = 1.0, 0.5, 0.1σ. Data
are averaged over 4 different network topologies for microgels with N ∼ 5000.

very strong for σc = σ and still slightly present for σc = 0.5σ, leading to a decrease in the

shrinking capability of the microgel at high α values. However, they disappear for σc = 0.1σ
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that is the counterion size used throughout the manuscript.

S3. Additional details on the form factors fits

In this section we show the form factors of the neutral and Debye-Hückel microgels with

f = 0.20 at different values of α and we compare them with the fits obtained through

the extended fuzzy sphere model with a modified Lorentzian (Eqns. 12 and 13 of the main

text). We also comment the evolution of the fits parameters as a function of α and conclude

discussing in more detail the capabilities of these models to describe the structure of charged

microgels with explicit counterions.

As we can see in Fig. S4, all the data are well described by the model at all studied values

of α for both types of microgels. In order to improve statistics, data have been averaged

over 4 network topologies.
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Figure S4: Zoom of the form factors of Figure 9(b,c) of the main text for (a) implicit (DH) and
(b) neutral microgels at different values of α. Symbols are simulation data, while lines are fits
according to Eqns. 12 and 13 of the main text for qσ . 3. Data sets corresponding to the different
α values have been vertically shifted for a matter of clarity.

Fig. S5 shows the evolution of the parameters obtained from the fits for the neutral model,

the implicit one, and the explicit above the VPT. Panels S5(a,c) display the core radius R and
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the surface thickness σsurf, characterising the structure at large length scales, or equivalently

in the small-q region of the Fourier space, modelled with and extended fuzzy sphere function

(Eq. 12). They both decrease as a function of the effective temperature α, because of the

global shrinking of the microgels, as expected. Panels S5(b,d) show the evolution of the
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Figure S5: The four panels display the evolution of the fuzzy sphere parameters R and σsurf, the
network correlation length ξ and the fractal-dimension exponent D as a function of α, computed
by fitting the form factors with Eqns. 12 and 13 of the main text. Three sets of data are shown in
each panel: those relative to the microgel with explicit counterions for α > αVPT (squares), those
relative to the Debye-Hückel model (circles), and those relative to the neutral case (diamonds).

correlation length ξ and the fractal dimension exponent D of the Lorentzian contribution

(Eq. 13), which accounts for the polymer structure of the network, that is mostly visible in the

intermediate- and high-q region. As expected, D increases when increasing α. This indicates

the coarsening of the network acted by the solvophobic attraction, which brings close to each

other also monomers that are not chemically linked, enhancing the effective connectivity of
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the network. The correlation length ξ decreases with increasing temperature, suggesting that

the average size of inhomogeneous regions in the polymer networks reasonably decreases when

the microgel shrinks, becoming more and more compact and homogeneous. This seems to be

also the case for the Debye-Hückel model, showing a qualitative agreement with experimental

data,8 apart from the largest α values, where the errors on these parameters become too

large. Indeed the q-range wherein the Lorentzian contribution is found becomes smaller and

smaller as α grows, being preempted by the growth of the peaks of the fuzzy sphere. Finally,

for qσ & 2− 3 the data resolution is limited by the finite size of our numerical model.

When it comes to the microgels with explicit counterions, the modified shape of the

corona and the absence of peaks beyond the first one are responsible for the fact that for

small values of α a modification of the fitting model must be adopted. We thus only use

the modified Lorentzian to fit separately the behavior of the regimes at intermediate q. The

resulting fit parameters are summarised in fig. S6 and an extensive discussion of these results

is reported in the main text. Here we further notice that finite size effects are responsible

for increasing the error on the fit parameters when increasing α. Particularly, for α = 0.74

the first flat region of P (q) extends over a too narrow q-interval to get meaningful results

for the Lorentzian fit. Hence we constrain the fractal dimension to be close to that observed

for smaller values of α, i.e. D ' 0.75, because it seems to remain constant. This leads us

to a value of ξ that is in line with the other α values, that decreases with increasing α. It

is also larger for the first Lorentzian function than for the second, in agreement with the

interpretation that the structure of the network in the corona (which dominates P (q) at

intermediate q values) is more open than that in the core (which dominates P (q) at larger q

values).

Above the VPT, the form factors are again well represented by an extended fuzzy sphere

model plus a modified Lorentzian, as for the implicit and neutral microgels. These parameters

are found in fig. S5. We notice that the Lorentzian parameters of the fit are affected by large

errors and their value become very sensitive to the fitting range. This is due to the fact that

8



the region wherein the Lorentzian contribution dominates P (q) shrinks with increasing α.
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Figure S6: Evolution of the network correlation lengths ξ1 and ξ2 and of the fractal-dimension
exponents D1 and D2 as a function of α. The parameters have been extrapolated by fitting the two
flat regimes of the form factors of microgels with explicit counterions with a modified Lorentzian
function (Eq. 13 of the main text).
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