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1 Entropic Effects in Polymer Melts Near a Sinusoidal

Surface

To understand the coupling between the conformational degrees of freedom characterized by

the Kuhn segment length and the surface curvature, we consider a polymer melt containing

monodisperse flexible polymers, A, each having NA Kuhn segments of length lA. Also, to

understand the effects of surface curvature, we consider an athermal system and focus on

entropic effects. For Gaussian chains, the free energy of weakly inhomogeneous polymer

melts can be written as1

F

ρ0kBT
=

f0

kBT
+

∆f

kBT
(S1)

where ρ0 is a reference number density and f0 represents contributions to the free energy

resulting from the translational entropy of the chains. These contributions involve local

volume fractions and can be written as:

f0

kBT
=

∫
dr

{
φA(r)

NA

lnφA(r)

}
(S2)

Here, φA(r) is the local volume fraction of A at r, which is unity far from the surface and

varies from unity to zero near an impenetrable surface. ∆f in Eq. S1 contains contributions

to the free energy from gradients of the volume fractions and leading order terms, up to

fourth order gradients in φA, and written as:1

∆f

kBT
=

1

2

∫
dr

{
b2
A

[∇rφA(r)]2

φA(r)
+ c4

A

[∇2
rφA(r)]

2

φA(r)
− d4

A

[∇2
rφA(r)] [∇rφA(r)]2

φ2
A(r)

}
(S3)
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To understand entropic surface effects, consider a surface (or “wall”) characterized by volume

fraction profile of the form

φw(r) =
1

2

[
1− tanh

(
z − u0(x)

ζ0

)]
(S5)

so that φA(r) + φw(r) = 1 implies

φA(r) =
1

2

[
1 + tanh

(
z − u0(x)

ζ0

)]
(S6)

Here, u0(x) characterizes the shape of the surface along the lateral direction, and for a

sinusoidal surface centered at z = z0, u0(x) = z0 + a sin 2πx/λ. ζ0 characterizes the width

of the surface along z direction. In the following we analyze the limit of ζ0 → 0 to gain

understanding of surface curvature effects. Also, we consider a surface containing an integral

number of sinusoidal repeats so that if Lx is the total length of the surface, then Lx/λ is an

integer. Using Eqs. S1, S2, S3 and S6, in the limit of ζ0 → 0 for a surface with dimensions

Lx and Ly we can write,

F

ρ0kBT
→ ∆f

kBT
=
R3
gAL̄xL̄y

6NAζ̄0

1

λ̄

∫ λ̄

0

dx̄

[
1 +

(
∂u0(x̄)

∂x̄

)2

+
1

12

(
∂2u0(x̄)

∂x̄2

)2

+
1

15ζ̄2
0

{
1 +

(
∂u0(x̄)

∂x̄

)2
}2
 (S7)

In writing Eq. S7 we have used the radius of gyration of A to make lenghts dimensionless,

which leads to the replacement of r ≡ {x, y, z} by r̄ ≡ {x̄ = x/RgA, ȳ = y/RgA, z̄ = z/RgA}

so that RgA = (NA/6)1/2lA. For a sinusoidal surface centered at z = z0, plugging u0(x) =

z0 + a sin 2πx/λ in Eq. S7 leads to

∆f

kBT
=

l2ALxLy
36ζ0

[
1 +

R2
gA

15ζ2
0

+
1

2

(
2πa

λ

)2
{

1 +
2R2

gA

15ζ2
0

+
π2R2

gA

3λ2
+
R2
gA

20ζ2
0

(
2πa

λ

)2
}]

(S8)
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Eq. S8 provides useful insights into entropic effects near surfaces. First, for a planar surface

so that a = 0, the free energy cost for creating the gradients is

∆f

kBT
≡ ∆fplanar

kBT
=
l2ALxLy

36ζ0

[
1 +

R2
gA

15ζ2
0

]
(S9)

Eq. S9 implies that in a polymer blend near a sinusoidal surface containing polymers with

equal number of Kuhn segments (i.e., NA = NB in a blend containing A and B), but with

different Kuhn segment lengths, lA and lB. Polymers with lower Kuhn length segments are

preferred near the surface due to the relation ∆fplanar

kBT
∼ l2j , j = A,B. Similarly, for lA = lB

but NA 6= NB, polymers with a lower number of Kuhn segments are favored due to the

dependence of ∆fplanar on R2
gj ∼ Nj, j = A,B. These entropic effects can lead to vertical

segregation in polymer blends near planar surfaces due to differences in either Kuhn length

segments or their numbers.

Near a sinusoidal surface (i.e., a 6= 0) effects of mean curvature may be significant. In

order to get an insight into how curvature in affects entropic contributions to the free energy,

we first consider the limit of a/λ → 0, which corresponds to weak-curvature as the mean

curvature ∼ (∂2u0(x)/∂x2)2 ∼ a2/λ4. In the limit of a/λ→ 0, Eq. S8 becomes

∆fa/λ→0

kBT
=

∆fplanar
kBT

+
l2ALxLy

72ζ0

(
2πa

λ

)2{
1 +

2R2
gA

15ζ2
0

+
π2R2

gA

3λ2

}
(S10)

where ∆fplanar is given by Eq. S9. It can be readily shown (by comparing the term propor-

tional to a2/λ4 with the rest in Eq. S10) that in this limit, effects of the mean curvature are

significant only for λ ≤
√

5πζ0/
√

2, which is almost impossible to realize in experiments due

to the fact that ζ0 → 0. We now estimate the limits in which the effects of mean curvature

are significant. This can be done by making sure that ∆f−∆fplanar in Eq. S8 is proportional

to a2/λ4. This leads to limits λ � πRgA/
√

3 = 1.81RgA and a �
√

2RgA/3 = 0.47RgA. In

S5



these limits, Eq. S8 becomes

∆f

kBT
=

∆fplanar
kBT

+
l4ALxLy
108ζ0

(πa)2NA

λ4

{
π2

3
+

1

20

(
2πa

ζ0

)2
}

(S11)

It should be noted that the free energy cost in the limit when the effects of mean curvature

are significant is proportional to NAl
4
A. This implies that in a polymer blend containing

chains of equal number of Kuhn segments NA = NB, the chains with lower Kuhn segment

lengths cost less in the free energy and prefer to occupy strongly curved surfaces. Although

local information has been integrated out in Eq. S8, the same conclusion can be inferred

about sorting based on the local mean curvature from Eq. S7, and is valid for any laterally-

symmetric shape of the surface.

2 Supplementary SCFT Results

2.1 Effect of conformational asymmetry on phase distribution

We study the effect of the Kuhn length ratio ηK on phase behavior of binary homopolymer

blends in thin films. In Fig. S1(a), we show density profiles of the B polymer (in colormap)

inside the films of φB = 0.2 for various ηK . The system parameters of the film are h = 0.8,

a = 1.0, and λ = 2.56. The blend is in the two-phase region at χN = 6 and macrophase

segregation occurs inside the corrugated thin film. Here we show the system in one period

of the sine curve for illustration purposes. As the emerged phase domains are not strongly

correlated with each other, the morphological behavior in a larger simulation cell containing

multiple periods may be different. However, the curvature effect on domain arrangement is

generally the same.

At ηK = 1.0, A and B segments are conformationally symmetric. The B-rich phase

(with φB > 0.2) locates in the high curvature regions (i.e., around peaks or valleys). With

increasing ηK , the B polymer becomes less flexible than the A polymer and the location of
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Figure S1: (a) SCFT density profiles of B polymers inside corrugated thin films for φB = 0.2,
χ = 0.1, and N = 60 at various Kuhn length ratio ηK . The length scale is in units of
Rg = (N/6)1/2lA, which is the radius of gyration of the A polymer. The corrugation is
defined by a sinusoidal function, u(x) = a sin(2πx/λ), with a = 1.0 and λ = 2.56. The film
thickness is dictated by the separation of the two sine waves, which is set as 0.8. (b) The
change of overall free energy (∆F ), enthalpic term (∆U), and entropic term (∆(−TS), T is
temperature) as a function of ηK for ηK = 1.
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the B-rich phase is shifted to the slope region where the curvature is lower. This results in

the A polymers being accommodated in the high curvature region. The change in system

configuration is to reduce the entropy loss as a result of the confining segments with the

larger Kuhn lengths in the high curvature region. This overcomes the effects from two other

factors, namely, the entropy loss from confining a portion of A polymers in the high curvature

region and the slight increase of enthalpy due to an increase in the interfacial area between A

and B (see Fig. S1(b)). This lateral domain redistribution clearly demonstrates the sorting

effect induced by the coupling of spatial curvature and polymer conformational asymmetry.

2.2 Geometric consideration

Figure S2: Illustration of (a) sin(x) curve in the range of [0, 2π] and (b) associated geometric
properties that includes the slope of the arc length, ds/dx =

√
1 + cos2 x (black curve), and

the corresponding curvature κ = | sinx|/(1 + cos2 x)3/2 plotted on a separate y axis (blue
curve).
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2.3 Density profiles of different B volume fractions

Figure S3: SCFT density profiles of B polymer inside sinusoidally corrugated thin films of
a = 1.4 for χ = 0.1, N = 60, and ηK = 2 at various corrugation wavelengths λ and volume
fractions φB. The length scales are in units of Rg = (N/6)1/2lA, namely the radius of gyration
of the A polymer.
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3 Supplementary Molecular Dynamics (MD) Results

3.1 Coarse-grained model and simulation procedure

We adopted a coarse-grained model with implicit solvent based on the Cooke–Deserno lipid

model.2,3 As illustrated in Fig. S4(a), a lipid is represented by three beads connected via an-

harmonic springs, which can be made stiff or rod-like with the addition of an angle potential

(see Eqs. 1-4 in Ref. 4). The tail beads have a diameter σ and the head beads are of size

0.95 σ. The head bead is purely repulsive while the pair-wise interaction between tail beads

consists of a hard-core repulsion and a long-range attraction that is dictated by a decay

parameter wc.4 This attractive long-range potential qualitatively prescribes the correct hy-

drophobic balance. We empirically determined the relationship between wc and the bending

rigidity κ of the lipid bilayer, which is given by κ = e 8.051wc−9.730.4 The corrugated substrate

was composed of a group of fixed beads with a thickness of 5 σ and a number density of

1 σ−3 (see Fig. S4(b)). The substrate surface conformed to a sine wave function along the x

direction, u(x) = a sin(2πx/λ) (a = 0 represents a planar substrate). The related plots were

all shifted in phase for illustration purpose. Given the translational symmetry imposed in

the y direction, the corresponding principal curvature is equal to zero, hence the Gaussian

curvature of the surface is also zero.

The initial setup of the simulation box is shown in Fig. S4(c), which has dimensions of

Lx = Ly = 40π σ and Lz > 120 σ. Periodic boundary conditions were enforced in both the

x and y directions. The z component of the center-of-mass of the substrate was located at

−2.5 σ, and the reference line of the surface wave pattern was at z = 0. A lipid bilayer with

randomly distributed lipids was arranged in a cylindrical arc with angle θ and radius R, which

was positioned with its lowest point 2 σ above the nearest peak of the corrugated substrate.

The arc length of the cross-section S was equal to the arc length of the substrate surface. The

average area per lipid was set to 1.35 σ2, which is near to the equilibrium value for the Cooke

lipids of wc,AB = 1.3 σ.2–4 We note that by using a higher value of area per lipid, one could
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Figure S4: (a) Illustration of the coarse-grained model for A and B lipids, showing blue
and cyan beads for the head and tail of A lipid, respectively, and red and magenta beads
for the head and tail of B lipid, respectively. The parameters wc,AA, wc,BB, wc,AB are the
tail-tail interaction parameters for A-A, B-B, and A-B types of interactions, respectively.
(B) Illustration of the substrate consisting of fixed beads, which conforms to a sine wave
function. The gray-scale legend pertains to the absolute value of the mean curvature for the
case of a = 5 σ and λ = 10π σ. (c) Initial setup of the simulation, where the lipid bilayer
is arranged on a cylindrical arc with radius R and angle θ. The arc length S is equal to the
length of the substrate surface.
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minimize buckling and imperfect coating of the bilayer onto the substrate. In the bilayer, the

major component was the A lipid, which has a tail-tail interaction parameter wc,AA = 1.5 σ

that results an empirical bending rigidity κA = 10.4 kBT (kBT is thermal energy), while the

minority B lipids were stiffer with wc,BB = 1.7 σ, corresponding to κB = 52.3 kBT . These

wc values were chosen such that the lipid membrane is in the fluid phase.

A harmonic spring potential, Usp = ks[zcm − (a+ σ)]2/2, was applied to the lipids in the

initial configuration to move the bilayer towards the substrate, where zcm is the z component

center-of-mass of the bilayer and the spring constant ks = 2000 kBT/σ
2. The pair interaction

between substrate and lipid beads is described by a truncated-shifted Lennard–Jones (LJ)

potential,

ULJ =


4εLJ

[(
σ
rij

)12

−
(
σ
rij

)6

−
(
σ
rc

)12

+
(
σ
rc

)6
]

rij ≤ rc

0 rij > rc

(S12)

where rij is the distance between the i and j beads, σ is the bead diameter, rc is the

cut-off distance, and εLJ is the potential well-depth. Specifically, εLJ = 0.75 kBT and

rc = 2.5 σ for the attractive interaction between substrate and head beads; εLJ = 1.0 kBT

and rc = 21/6 σ, namely, the Weeks–Chandler–Andersen (WCA) potential for the purely

repulsive interaction between the substrate and tail beads. This interaction setup allows the

formation of a perpendicular bilayer on the substrate.

Standard LJ reduced units were used and all quantities were nondimensionalized with

respect to the length σ, energy ε, and mass m. Accordingly, the reduced time is τ =

σ
√
m/ε and temperature is T = ε/kB (kB is the Boltzmann constant). The length and time

units are approximately 1 nm and 10 ns, respectively in real units.2 Canonical ensemble

simulations were performed using a Langevin thermostat with a friction coefficient of 1.0τ−1,

and the equations of motion were integrated with a timestep of 0.01τ using the velocity-

Verlet algorithm implemented in the LAMMPS MD simulations package.5,6 The initial run

proceeded up to 5000 τ , while the production run proceeded up to 8 × 105 τ , which is

approximately 8 ms in real units. Sample LAMMPS input and data files for the initial film

S12



lamination process and the succeeding coarsening production runs are provided at https:

//code.ornl.gov/jyw/influence-of-curvature-on-domain. The statistical results were

obtained from three independent simulation runs. Table S1 tabulates the simulation system

sizes for different substrate wavelengths, λ.

Table S1: System sizes

λ nAtom
a nSubstrate

b nLipid
c

10π 176,171 79,451 32,240
20π 164,234 79,418 28,272
40π 160,244 79,148 27,032
∞ 157,025 77,417 26,536

atotal number of beads
bnumber of substrate beads
cnumber of lipid molecules

3.2 Domain discretization for data analysis

The binary system forms separate B lipid domains along with the simulation. The data anal-

ysis relies on the characterization of the phase-separated domains. As illustrated in Fig. S5,

the numerical analysis is performed over a 63 × 63 mesh encompassing the substrate, with

a grid size of ∆xi =

∫ xi+1

xi

√
1 + (2πa/λ)2 cos2(2πx/λ)dx (i.e., the arc length from indexes

xi to xi+1) and ∆yj = ∆y = 40π σ/63 ≈ 1.995 σ. The grid surface area is approximated as

∆Ai = ∆xi∆y. The identity of a grid is defined by the majority species inside the grid.

Figure S5: Illustration of a 63× 63 mesh used in data analysis, with grid size ∆xi and ∆y.

Domains are formed by neighboring grids having the same identity, which are identified
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from the system configuration. The domain grid members are tracked by a linked list through

cluster analysis.7 We focus on the separate B lipid domains, where the number of domains

nd and the area of each domain Ad =
∑d ∆Ai (d is the number of grids in a domain) are

determined along the simulation trajectory. The total perimeter length of the domains lb

was estimated by summing ∆xi and ∆y for all pairs of nearest neighbor grids with different

identities.

3.3 Brief kinetic analysis

We first checked the phase separating process of binary lipid mixtures supported by a planar

substrate. The simulation trajectories (of the production runs) were analyzed to understand

the demixing behavior inside the bilayer. Fig. S6 shows the statistical results from the

ensemble average. As the simulation proceeded and the coarsening of B domains took place,

the number of B lipid domains nd and the total boundary length of B lipid domains lb

decreased (Fig. S6(a) and (c)); the average area of the B lipid domains increased (Fig. S6(b)).

This coarsening process acts to reduce the interfacial energy between the A and B lipids at

the domain boundaries, which is proportional to the total boundary length.8

Next, we examined the effect of surface corrugation on the evolution of the phase separa-

tion in the bilayer. In Fig. S7, we show the temporal evolution of nd, Ad, and lb, in the system

with ρB = 0.15 and with different surface corrugations – the flat substrate (a = 0) case is

included for comparison. The system forms large B lipid domains on the flat substrate, and

exhibits the largest Ad, and the smallest nd and lb in the steady state. As the substrate

becomes corrugated, intermediate-sized B lipid domains get trapped in low curvature re-

gions, which hinders the coarsening process. Therefore, as λ reduces and the curvature effect

increases, nd comparatively increases, while Ad decreases and lb increases.
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Figure S6: The temporal evolution of (a) number of domains nd, (b) average area per domain
Ad, and (c) total boundary length between domain and matrix lb, in a phase-separating
binary mixture supported by a planar substrate with a different B lipid number fraction ρB.
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Figure S7: The temporal evolution of (a) number of domains nd, (b) average area per domain
Ad, and (c) total boundary length between domain and matrix lb, in a phase-separating
binary mixture of ρB = 0.15 supported by substrate with different surface corrugations.
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3.4 Average mean curvature and domain area
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Figure S8: Distribution of average domain mean curvature |Hd| as a function of domain area,
Ad, for a system with a = 5, λ = 10π. The red data points are the aggregate data from
three independent runs of systems with different ρb and at different times in the simulation
trajectory. The black line is the binned data for bin size in the x-axis equal to 5 σ2.

Figure S9: Snapshot of the final simulation frame at t = 8 × 105 τ for the system with
ρB = 0.05. Domains that are situated at high curvature regions are encircled.
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3.5 Line tension between A and B domains

Figure S10: (a) Schematic of the domain interface between A and B lipids shown as a
dotted line, and where the parameters of the Cooke-Deserno model2,3 are also indicated. (b)
Snapshot of the MD simulation of two slabs of A and B lipid tail beads.

The line tension between A and B domains is estimated by calculating the surface en-

ergy in their interface shown in Fig. S10(a). Since in the Cooke-Deserno model,2,3 the

head beads are purely repulsive, the main contributors to the interfacial energy are the

tail beads. We performed MD simulations of a slab consisting of only A and B lipid

tail beads (see Fig. S10(b)) and calculated the interfacial energy between two slabs as,

γs = Lz/2 [〈Pzz〉 − (〈Pxx〉+ 〈Pyy〉)/2] where 〈Pxx〉, 〈Pyy〉, and 〈Pzz〉 are the average diagonal

components of the pressure tensor and Lz is the length of the simulation box.9 The line

tension is then estimated as ΣAB = γs 〈h〉, where 〈h〉 is the average thickness of the bilayer.

For the parameters used in the simulations, ΣAB = 3.56 kBT/σ.
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