Supplementary Information for "Stress relaxation in F-actin solutions by severing"

S. Arzash,^{1,2} P.M. McCall,^{3,4,5,6,7} J. Feng,² M.L. Gardel,^{3,4,8} and F.C. MacKintosh^{1,2,9,10}

¹Department of Chemical & Biomolecular Engineering, Rice University, Houston, TX 77005

²Center for Theoretical Biological Physics, Rice University, Houston, TX 77030

³Department of Physics, University of Chicago, Chicago, IL 60637

⁴ James Franck Institute, University of Chicago, Chicago, IL 60637

⁵Max Planck Institute of Molecular Cell Biology and Genetics,

Pfotenhauerstraße 108, 01307 Dresden, Germany

⁶Max Planck Institute for the Physics of Complex Systems, Nöthnitzerstraße 38, 01187 Dresden, Germany

⁷Center for Systems Biology Dresden, Pfotenhauerstraße 108, 01307 Dresden, Germany

⁸Institute for Biophysical Dynamics, University of Chicago, IL 60637

⁹Department of Chemistry, Rice University, Houston, TX 77005

¹⁰Department of Physics & Astronomy, Rice University, Houston, TX 77005

Timescales in the case of unstable fragments $(\gamma \rightarrow \infty)$

By rewriting Eq. (14) in terms of the two length scales, i.e., the entanglement length L_e and the initial average length $\langle L \rangle$, we obtain

$$\sigma(t) = L_e \exp\left(-R^2 - t/\tau_1\right) + \langle L \rangle \operatorname{erfc}(R + t/\tau_2) \exp\left((t/\tau_2)^2\right)$$
(1)

where $R = \frac{\sqrt{\pi}}{2} \frac{L_e}{\langle L \rangle}$, $\tau_1 = \frac{1}{\alpha L_e}$, and $\tau_2 = \frac{\sqrt{\pi}}{\alpha \langle L \rangle}$. This expression gives two different timescales τ_1 and τ_2 indicating that in the regime where $L_e < \langle L \rangle < L_d$, stress initially decays as $\frac{1}{\langle L \rangle}$ (see inset of Fig. 4 in the main text) and then relaxes as $\frac{1}{L_e}$.

Length-independent stress relaxation for finite γ

Figure S1 shows the stress relaxation for two different initial average length $\langle L \rangle$ in the regime where $L_e < L_d < \langle L \rangle$ (regime II in Fig. 2a and b in the main text). As expected, the stress relaxation is length-independent in this regime. The deviation of the curve corresponding to the smaller length is due to numerical errors. Likewise, by plotting stress relaxation curves for two different $\langle L \rangle$ in the regime where $L_d < L_e < \langle L \rangle$ (regime III in Fig. 2a and b in the main text), which is shown in Fig. S2, we clearly see a length-independent relaxation.

FIG. S1. Stress relaxation for two different $\langle L \rangle$ as shown in the legend in the regime where $L_e < L_d < \langle L \rangle$ for $L_e = 20$ and $L_d = 150$.

FIG. S2. Stress relaxation for two different $\langle L \rangle$ as shown in the legend in the regime where $L_d < L_e < \langle L \rangle$ for $L_e = 150$ and $L_d = 20$.