ESI

Hydrogen Bonded Coassembly of Aromatic Amino Acids and Bipyridines that Serves as Sacrificial Templates in Superstructure Formation

Zhuoer Wang,^a Qiuhong Cheng,^a Pengyao Xing^a, Zhaozhen Cao^{*a} and Aiyou Hao^{*b} ^aKey Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China

^bInstitute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China

Figure S1. Optical microscopy images. a) Asp-BPE coassembly in MeOH (C_{Asp} =

66.7mM). b) Gly-BP coassembly in acetone ($C_{Gly} = 100 \text{ mM}$). c) Gly-BPE coassembly in acetone ($C_{Gly} = 100 \text{ mM}$). d) Ala-bpe coassembly in acetone ($C_{Ala} = 100 \text{ mM}$). e) Asp-BPE coassembly in acetone ($C_{Asp} = 100 \text{ mM}$). f) Gly-BP coassembly in EtOH ($C_{Gly} = 66.7 \text{ mM}$). g) Gly-BPE coassembly in EtOH ($C_{Gly} = 66.7 \text{ mM}$). h) Asp-BPE coassembly in EtOH ($C_{Asp} = 66.7 \text{ mM}$). i) Gly-BPE coassembly in MeCN ($C_{Gly} = 15 \text{ mM}$). j) Asp-BPE coassembly in MeCN ($C_{Asp} = 66.7 \text{ mM}$). k) Gly-BPE coassembly in THF ($C_{Gly} = 66.7 \text{ mM}$). Molar ratio between aromatic amino acids and bipyridine was fixed at 2:1.

Figure S2. Polarized optical microscopic images. a) Asp-BPE coassembly in MeOH $(C_{Asp} = 66.7 \text{mM})$. b) Gly-BP coassembly in acetone $(C_{Gly} = 100 \text{ mM})$. c) Gly-BPE coassembly in acetone $(C_{Gly} = 100 \text{ mM})$. d) Ala-bpe coassembly in acetone $(C_{Ala} = 100 \text{ mM})$. e) Asp-BPE coassembly in acetone $(C_{Asp} = 100 \text{ mM})$. f) Gly-BP coassembly in EtOH $(C_{Gly} = 66.7 \text{ mM})$. g) Gly-BPE coassembly in EtOH $(C_{Gly} = 66.7 \text{ mM})$. g) Gly-BPE coassembly in EtOH $(C_{Gly} = 66.7 \text{ mM})$. i) Gly-BPE coassembly in MeCN $(C_{Gly} = 15 \text{ mM})$. j) Asp-BPE coassembly in MeCN $(C_{Asp} = 66.7 \text{ mM})$. k) Gly-BPE coassembly in THF $(C_{Gly} = 66.7 \text{ mM})$. Molar ratio between aromatic amino

acids and bipyridine was fixed at 2:1.

Figure S3. SEM image of Asp-BPE coassembly in MeOH (66.7mM:33.3mM).

Figure S4. Stacking of Gly-BP in crystal structure.

Figure S5. XRD pattern comparison of Gly-BP in MeOH ($C_{Gly} = 66.7$ mM), acetone ($C_{Gly} = 200$ mM), EtOH ($C_{Gly} = 66.7$ mM). Molar ratio between aromatic amino acids and bipyridine was fixed at 2:1.

Figure S6. XRD patterns of Asp-BPE coassemblies in MeOH ($C_{Asp} = 66.7 \text{ mM}$),

acetone ($C_{Asp} = 100 \text{ mM}$), EtOH ($C_{Asp} = 66.7 \text{ mM}$) and MeCN ($C_{Asp} = 66.7 \text{ mM}$). Molar ratio between aromatic amino acids and bipyridine was fixed at 2:1.

Figure S7. SEM images of Co-BP coassembly (50mM:50mM) in methanol.

Figure S8. SEM images of Ni-BP coassembly (50mM:50mM) in methanol.

Figure S9. SEM images of Cu-BP coassembly (50mM:50mM) in methanol.

Figure S10. SEM images of Zn-BP coassembly (50mM:50mM) in methanol.

Figure S11. SEM images of Ni-BPE coassembly (50mM:50mM) in methanol.

Figure S12. SEM images of Zn-BPE coassembly (50mM:50mM) in methanol.

Figure S13. SEM image of Ni(II) treated Gly-BP (66.7 mM:33.3 mM) coassemblies $(C_{Ni} = 25 \text{ mM}).$

Figure S14. SEM image of Ni(II) treated Gly-BPE (66.7 mM:33.3 mM) coassemblies $(C_{Ni} = 11.8 \text{ mM for a-c}; C_{Ni} = 6.25 \text{ mM for d-f}).$

Figure S15. SEM image of Cu(II) treated Gly-BP (66.7 mM:33.3 mM) coassemblies

 $(C_{Ni} = 11.8 \text{ mM}).$

Figure S16. SEM image of Co(II) treated Gly-BP (66.7 mM:33.3 mM) coassemblies $(C_{Co} = 11.8 \text{ mM for a-c}; C_{Co} = 9.1 \text{ mM for d-f}).$

Figure S17. FT-IR spectra of Zn-treated Gly-BP samples with different Zn^{2+} concentrations. (Zn-BP 50 mM:50 mM; Gly-BP 66.7 mM:33.3 mM)